钌系厚膜电阻重烧变化特性的研究

罗 慧,李世鸿*,刘寄松,金勿毁

(昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室, 昆明 650106)

摘 要:采用高温熔融-水淬法制备玻璃相,固相法制备导电相 Bi₂Ru₂O₇、CaRuO₃和 BaRuO₃,水 浴溶解法制备有机载体,配制成电阻浆料后印制成电阻,经烘干、烧结后测算其重烧变化率。研究 了玻璃组成中硼硅比例 B₂O₃/SiO₂、混合玻璃粉比例以及导电相对重烧变化率的影响。提出了改善 电阻重烧变化率的几种办法。制备出的几种电阻浆料重烧变化率较小,可满足使用要求。 关键词:复合材料;厚膜电阻;RuO₂;CaRuO₃;BaRuO₃;重烧变化率 中图分类号:TG146.3⁺8 文献标识码:A 文章编号:1004-0676(2013)01-0033-05

Research on the Change of Resistance of Refired Ru-based Thick-film Resistors

LUO Hui, LI Shihong^{*}, LIU Jisong, JIN Wuhui

(State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China)

Abstract: Six glass powders were prepared by conventional melting-quenching method. Conducting phases $Bi_2Ru_2O_7$, $CaRuO_3$ and $BaRuO_3$ were prepared through solid-phase reaction. The organic matter was also prepared by dissolution. Thus, a series of thick-film pastes were formed by mixture of conducting phases, glass powder and organic matter. The pastes were printed on 96% Al_2O_3 substrates to form resistors and then dried and fired. The change of resistance values of each resistor after refiring were measured and calculated. The influences of B_2O_3/SiO_2 , the ratio of two glass powders and the change of resistance value were studied. Several ways to bring down the change of resistance value were proposed.

Key words: composite; thick-film resistor; RuO₂; CaRuO₃; BaRuO₃; change of resistance value after refiring

厚膜电阻浆料是由导电相、玻璃相、有机载体 和其它氧化物组成的复合材料体系,广泛用于集成 电路中^[1]。厚膜电阻的导电机制与其导电相的体积 分数有关,当导电相粒子的体积分数较高时,导电 相粒子可相互接触,形成连续的导电通路,导电机 制为金属链导电;当导电相粒子的体积分数较低时, 导电相粒子之间并不是直接互相接触,而是由一层 极薄的玻璃层隔开,此时的导电机制为隧道效应导 电^[2-4]。导电相材料为二氧化钌或钌酸盐的钌系厚膜 电阻浆料以其优良的电气性能、工艺重复性以及稳 定性好、阻值范围宽和可在大气中烧成等一系列优 点^[1,5-6],成为应用最广泛的厚膜电阻浆料。

钌系厚膜电阻浆料采用的导电相通常是超细的 脱水氧化钌、钌酸盐及其衍生物等^[7-8],对导电相的 基本要求是要有适当的电阻率和高度的稳定性,在 高温烧结时不发生分解,也不与玻璃相反应^[9-11]。 玻璃相可采用硼硅铅玻璃、硼硅铅铝玻璃等,为调 节玻璃的粘度和稳定性常加入少量的 ZnO、Al₂O₃、 CaO 等氧化物^[3, 6, 12]。适用于电阻浆料的无铅玻璃 也在研究当中,主要成分为: SiO₂、B₂O₃、CaO、

收稿日期: 2012-01-13

基金项目:国家科技支撑项目(2012BAE06B00)资助。

第一作者:罗 慧,女,硕士研究生,研究方向:无铅厚膜电阻浆料。E-mail: Estron@126.com

^{*}通讯作者:李世鸿,男,高级工程师,研究方向:贵金属电子浆料研发。E-mail: lsh@ipm.com.cn

Al₂O₃、ZnO、BaO等^[13]。对玻璃相的基本要求包括: 较低的软化点,能在 850℃烧结;热膨胀系数与基 板材料相近或略小于基板的热膨胀系数^[14-16];适当 的表面张力和化学性质稳定等^[9,14-15]。有机载体一 般采用乙基纤维素-松油醇体系,并添加适量的邻苯 二甲酸二丁酯、氢化蓖麻油、卵磷脂、松节油、柠 檬酸三丁脂、司班 85等。有时为便于印刷还视浆料 情况加入少量流平剂和表面活性剂,对有机载体的 要求是能浸润固体粉料,并使之形成一定粘度的均 匀的膏状物,易流平和便于印刷^[2,5,17-19]。此外,为 调节电阻的电性能如电阻温度系数,还需要加入一 些其它氧化物,常用的如 MnO₂、CuO、Nb₂O₅、V₂O₅ 等^[16,20]。

厚膜电阻的制备一般是通过丝网印刷把电阻浆 料印制在预先印制和烧结好导体带的基板上,再经 流平、烘干、烧结和激光调阻制成^[10]。由于有时需 要印制不止一种浆料,事先烧结、调阻好的电阻就 要被再次烧结。此外,在电阻元件的包封中,也会 再次进行烧结。电阻在重烧时其阻值一般会发生变 化,若阻值变化过大则会影响到电阻的正常使用。 因此,研究电阻的重烧变化有实际意义。

目前,电阻阻值重烧变化尚无很具体的研究, 阻值重烧变化率是电阻稳定性的重要参数之一。但 是电阻的重烧稳定性与其它的稳定性能如常温存放 稳定性、耐湿稳定性、耐热稳定性、浸锡稳定性等 又有很大的不同。一般要求重烧2次后的变化率小 于10%。本研究尝试用实验和理论相结合的方法, 探究厚膜电阻重烧变化的规律及改善途径。

1 实验部分

1.1 导电相的制备

本研究采用的导电相为钌酸铋(Bi₂Ru₂O₇)、钌酸 钡(BaRuO₃)和钌酸钙(CaRuO₃)。导电相的合成分别 采用超细脱水氧化钌(RuO₂,贵研铂业股份有限公 司生产)与氧化铋(Bi₂O₃)、碳酸钡(BaCO₃)和碳酸钙 (CaCO₃)在 800~900℃,经 12~24 h 高温固相反应制 得,再经球磨细化得到。经 XRD 测试结果表明, 所得到的是较为纯净的钌酸铋、钌酸钡和钌酸钙, 球磨后钌酸铋的 D₅₀ 为 0.06 µm,钌酸钡的 D₅₀ 为 0.49 µm,钌酸钙的 D₅₀ 为 0.41 µm,激光粒度分析 测试结果分别见图 1~3。

图1Bi₂Ru₂O7粒度分布图

1.2 玻璃相的制备

玻璃相的制备采用高温熔融-水淬球磨法。

第一组玻璃样品编号GA1~GA4为B-Si-Ca-Al 系玻璃。按质量百分比B₂O₃(以H₃BO₃引入): 20%~40%, SiO₂: 10%~40%, CaO(以CaCO₃引入): 20%~30%, Al₂O₃: 10%~20%, MgO: 0%~5%。玻 璃GA1~GA4中CaO、Al₂O₃、MgO的含量相同, B₂O₃ 和SiO₂的质量百分比分别为1:1、2:1、3:1和4:1。 第二组玻璃样品编号GB1、GB2为B-Si-Al-Ba-Zn系玻璃。按质量百分比SiO₂: 10%~15%, B₂O₃ (以H₃BO₃引入): 30%~50%, Al₂O₃: 0%~10%, BaO (以BaCO₃引入): 20%~30%, ZnO: 10%~15%。GB1 和GB2中B₂O₃、SiO₂的含量不相同,其它成分含量 相同。

按配方称取原料后,在研钵中磨细、混合均匀 装入坩埚,在1100~1300℃熔制30~60 min,熔融的 玻璃液倒入去离子水中水淬后装入球磨罐中球磨 48 h。制得的玻璃粉过400 目标准筛后,在烘箱中 75℃烘干。取适量烘干的玻璃粉末,用 Netzsch STA 409 PG/PC 热分析仪对玻璃粉进行差热分析(DSC), 升温速率为25℃/min,参比样为Al₂O₃,其中GB1、 GB2 的玻璃化转变温度分别为744.6℃和691.5℃, 见图4、图5。

1.3 有机载体的制备

有机载体采用乙基纤维素-松油醇体系,并添加 一定量的丁基卡必醇、司班 85、蓖麻油和邻苯二甲 酸二丁酯。将各组分按配方称好置于烧杯中,于 80℃水浴溶解。所制得的载体流动性好,粘度适中。 用 Brookfield DV-II+Pro 粘度计测得其粘度为 5.8 Pa·s (20 r/min, 25±0.5℃, 25 号轴)。

1.4 浆料的配制

按一定比例称取相应的导电相、玻璃粉末和少 量其它氧化物,将称好的各组分在玛瑙钵中充分研 磨、混匀后,加入有机载体调制成流动性好的均一 的膏状物,为便于印刷加入少量松油醇调节浆料的 粘度在 200~300 Pa·s(0.2 r/min, 25±0.5℃, 25 号轴) 之间。用刮板细度计测量浆料的细度小于 20 μm。

浆料 PA1~PA4 采用的玻璃粉分别为 GA1~GA4,玻璃相占固体粉料(玻璃、导电相和其它氧化物,下同)的 56%;导电相为 Bi₂Ru₂O₇,占固体粉料的 40%;另添加 4%的其它氧化物以调节浆料的印刷性能。有机载体按浆料固含量为 70%计算后加入。

浆料 PB1~PB3 分别采用玻璃粉 GB1:GB2 = 4:1、2:1、1:1 的混合粉,玻璃粉占固体粉料的 36%; 导电相为 BaRuO₃,占固体粉料的 60%; 另添加 4% 的 MnO₂。有机载体按浆料固含量为 70%加入。

浆料 PC1~PC5 采用的玻璃粉为质量比 GB1: GB2 = 4:1 的混合粉,玻璃相共占固体粉料的 36%。 导电相为 CaRuO₃ 以及不同比例的 CaRuO₃ 和 BaRuO₃ 的混合粉,共占固体粉料的 60%。另添加 4%的 MnO₂调节电阻温度系数。有机载体按浆料固 含量为 70%计算后加入。

1.5 电阻的印制、烧结及阻值的测试

将配制好的电阻浆料印制在 96% Al₂O₃ 陶瓷基 片上,基片上已经预先印制、烧结好银浆导体带。 印制好的电阻经流平、烘干后置于烧结炉中经 850℃、18 min 烧结,所用的烧结炉为合肥恒力电 子有限公司生产的 RSK-2005 型烧结炉。电阻的重 烧在同样条件下进行,烧结后的电阻经冷却后用电 阻仪测量其阻值 *R*₁。电阻烧结 2 次后测得的阻值 *R*₂,计算其重烧变化率,按第一次重烧变化率ρ₁:

$\rho_1 = (R_2 - R_1)/R_1 \times 100\%$

共印制 12 片电阻, 计算后取其平均值, 第一次 重烧变化率 ρ₁ 见表 1~3。

电阻烧结 3 次后测得的阻值 *R*₃,按下式计算其 2 次重烧变化率 *ρ*₂:

$\rho_2 = (R_3 - R_1)/R_1 \times 100\%$

共印制 12 片电阻, 计算后取其平均值, 第二次 重烧变化率 ρ₂ 见表 1~3。

2 结果与讨论

表 1 为浆料 PA1~PA4 的组成及性能表。浆料 PA1~PA4 采用的导电相为 Bi₂Ru₂O₇; 玻璃相为 B₂O₃ 和 SiO₂, 质量比分别为 1:1、2:1、3:1 和 4:1 的

B-Si-Ca-Al 玻璃; 浆料的制备、印刷、烧结条件均 相同。从表 1 可以看出,随着玻璃相中硼硅比逐渐 增大, ρ₁逐渐由正向负方向变化。硼硅比在 1:1 到 2:1 之间,对重烧变化率的影响很大, ρ₁由 31.62 变 为 2.30, ρ₂由 62.63 变为 4.84; 硼硅比在 2:1 到 3:1 之间时,对重烧变化率的影响较小。因此,采用 B-Si-Ca-Al 玻璃作为厚膜电阻的玻璃相时,其硼硅 比在 2:1~3:1 之间较为适宜。

表1 浆料 PA1~PA4 组成及性能

Table 1 Compositions and properties of pastes PA1 to PA4

No.	导电相/%	玻璃相		重烧变化率/%	
	Bi ₂ Ru ₂ O ₇	硼/硅	玻璃相	_	$ ho_2$
		质量比	含量/%	$ ho_1$	
PA1	40	1:1	56	31.62	62.63
PA2	40	2:1	56	2.3	4.84
PA3	40	3:1	56	0.22	-1.76
PA4	40	4:1	56	-11.87	-10.64

表2为浆料PB1~PB3的组成及性能表。浆料 PB1~PB3采用的导电相为BaRuO₃,玻璃相为2种 B-Si-Al-Ba-Zn系玻璃GB1和GB2的混合粉,其中 GB1和GB2的比例分别为4:1、2:1、1:1。由表2可以 看出浆料PB1印制的电阻重烧变化率较大,*ρ*1和*ρ*2 分别为-19.20和-32.64;随着GB1的含量逐渐降低, 重烧变化率也逐渐降低,当GB1:GB2=1:1时,*ρ*1和*ρ*2 分别为-7.15和-8.94,小于10%,可满足使用要求。 经测试GB1、GB2的玻璃化转变点分别为744.6℃和 691.5℃。浆料PB1中高软化点的玻璃组分比例越高, 在烧结时和导电相的反应越不完全,再次烧结时反 应会继续进行,使电阻的微观结构发生变化,从而 引起电阻值较大的改变。随着玻璃相中高软化点组 分的比例下降,初次烧结时电阻体内各组分反应越 充分,再次烧结后阻值变化较小。

表 2 浆料 PB1~PB3 组成及性能

Table 2 Compositions and properties of pastes PB1 to PB3

No. –	导电相/%	玻璃相*	重烧变化率/%		
	BaRuO ₃	GB1:GB2	$ ho_1$	$ ho_2$	
PB1	60	4:1	-19.20	-32.64	
PB2	60	2:1	-14.44	-23.15	
PB3	60	1:1	-7.15	-8.94	

*玻璃相占固体含量的36%。

表3为浆料PC1~PC5的组成及性能表。对比 PB1(表2)和PC1(表3)的重烧性能可知,当玻璃相采 用GB1:GB2=4:1的混合粉时,导电相为BaRuO₃,电 阻重烧变化率为负;若用CaRuO₃作导电相,则重烧 变化率为正。由此可推知,将BaRuO₃和CaRuO₃按 一定比例混合作为导电相可得到重烧变化很小(近 于0)的浆料。

表 3 浆料 PC1~PC5 组成及性能

Table 5 Compositions and properties of pastes PC1 to PC

No. –	导电相*		玻璃相**	重烧变化率/%	
	BaRuO ₃	CaRuO ₃	GB1:GB2	$ ho_1$	$ ho_2$
PC1	0	60	4:1	62.34	224.34
PC2	58.76	1.24	4:1	-14.74	-18.13
PC3	54.12	4.88	4:1	-37.68	-47.33
PC4	48.41	9.59	4:1	-11.10	-17.50
PC5	47.60	12.40	4:1	1.71	2.54

*导电相占固体含量的60%; **玻璃相占固体含量的36%。

图 6 示出了 BaRuO₃:CaRuO₃ 在 58.76:1.24 到 47.60:12.40 之间(PC2~PC5)变化时, ρ_1 、 ρ_2 的变化情况。当 BaRuO₃:CaRuO₃=47.60:12.40 时, ρ_1 为 1.71, ρ_2 为 2.54,两值均很小,作为厚膜电阻十分理想。

图 6 两种导电相混合比例对重烧变化率的影响 Fig.6 Influence of the ratio of conducting particles on the change of resistance values after refiring

3 结论

(1) 电阻的烧结过程中,由于高温时间较短(通 常不超过10 min),因此电阻器中各组分并未完全反 应,各组分只是停留在一个亚平衡状态。在重新加 热时这个亚平衡状态将被打破,电阻的微观状态发 生变化,从而引起阻值的变化。电阻的微观状态与 玻璃和导电相密切相关,玻璃的结构、软化点以及 不同的导电相对电阻的重烧变化率有很大的影响。 (2) 玻璃的结构主要与玻璃中硼硅之比有关, 一般来说,硼含量越高,玻璃软化点越低,制成厚 膜电阻后重烧时玻璃的流动性大,使电阻的微观结 构发生较大变化;而硅含量越高,玻璃的软化困难, 烧结时不易烧透,重烧后电阻的微观结构也易发生 较大变化。因此选择合适的硼硅比,对厚膜电阻的 重烧变化率有很大的影响。对于本研究中采用的 B-Si-Ca-Al系玻璃,其适宜的硼硅比为2:1~3:1。

(3) 在制备厚膜电阻时,为了能同时满足几个 性能指标,常采用2种或者更多的玻璃粉。在采用混 合玻璃粉时,软化点高的玻璃比例较大时重烧后电 阻的微观结构变化越大,从而引起电阻值较大的改 变,电阻的重烧变化率越大。合理选择玻璃粉的比 例可降低重烧变化率。

(4) 电阻的重烧变化情况与导电相密切相关。不同的导电相重烧变化情况有很大的不同,在制备电阻时可通过选择2种重烧变化性质相反(一正一负)的导电相,调节2种导电相的比例可制得重烧变化率很小的电阻浆料。

参考文献:

- Butterfass J, Hirzinger G, Knock S. DLR's multisensory articulated hand, part I: Hard and software architecture[C]//Lenven. Belgium: Proceedings of the IEEE International Conference on Robotics and Automation, 1998: 2081-2086.
- [2] 张晓民. 钌基厚膜电阻器传导机理述评[J]. 电子元件 与材料, 1994, 13(3): 1-7.
- [3] Pike G E, Seager C H. Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors[J]. Applied Physics, 1977, 48(12): 5152-5169.
- [4] Gabani S, Flachbart K, Pavlik V. Microstructural analysis and transport properties of RuO₂-based thick film resistors[C]// Kosice: Proceedings of the CSMAG' 07 Conference, 2007: 9-12.
- [5] 陈章其. 钌系厚膜电阻器阻值受烧结温度影响机理的 探讨[J]. 电子器件, 1995, 18(4): 239-248.
- [6] 曲喜新. 电子元件材料手册[M]. 北京: 电子工业出版 社, 1988.
- [7] Rane S, Prudenziati M, Morten B. Structural and electrical properties of perovskite ruthenate-based leadfree thick film resistors on alumina and LTCC[J].

Materials in Electronics, 2005, 16(10): 687-691.

- [8] Pike G E, Seager C H. Electrical properties and conduction mechanisms of Ru-based thick- film (cermet) resistors[J]. Applied Physics, 1977, 48(12): 5152-5169.
- [9] Licznerski B W. Thick-film cermets, their physical properties and application[J]. Electronics, 1990, 69(1): 79-86.
- [10] Gurunathan K, Vyawahare N, Amalnerkar D P. Synthesis and characterization of CaRuO₃ and SrRuO₃ for resistor paste application[J]. Materials in Electronics, 2005, 16(1): 47-53.
- [11] Gulmurza Abdurakhmanov, Gulbahor S, Lutfullo X Tursunov. Interaction of RuO₂ and lead-silicate glass in thick-film resistors[J]. Condensed Matter Physics, 2011, 1(3): 1-5.
- [12] Andrzej Kusy. Classical percolation threshold and resistance versus temperature behaviour of RuO₂-glass films[J]. Condensed Matter Physics, 1997, 240(3): 226-241.
- [13] Prudenziati M, Zanardi F, Morten B. Lead-free thick film resistors:an explorative investigation[J]. Materials in Electronics, 2002, 13(1): 31-37.
- [14] Osamu Abe, Yoshiaki Taketa, Miyoshi Haradome. Effects of substrate thermal expansion coefficient on the physical and electrical properties of thick film resistors[J]. Thin Solid Films, 1988, 162(1): 7-12.
- [15] Setina J, Akishins V. Effect of glass composition on the properties of thick film resistors[J]. Equipment and Container Manufacture Welding, 2004, 23(10): 304-308.
- [16] Toshio Inokuma, Yoshiaki Taketa. Control of electrical properties of RuO₂ thick film resistors[J]. Active and Passive Electronic Components, 1987, 12(3): 155-166.
- [17] Hrovat M, Samardzija Z, Holc J. The development of microstructural and electrical characteristics in some thick-film resistors during firing[J]. Materials Science, 2002, 37(12): 2331-2339.
- [18] Osamu Abe, Yoshiaki Taketa, Miyoshi Haradome. Microstructure and electrical conduction in RuO₂ thick-film resistors[J]. Electrical Engineering in Japan, 1990, 110(1): 21-30.
- [19] Smith D P H, Anderson J C. Electrical conduction in thickfilm paste resistors[J]. Thin Solid Films, 1980, 71(1): 79-89.
- [20] Alessandrini A, Valdre G, Morten B. Electric force microscopy investigation of the micro-structure of thick film resistors[J]. Applied Physics, 2002, 92(8): 4705-4711.