高强高导Cu-Cr-Ag-Y合金的时效特征及其载流滑动磨损性能

王 松,谢 明^{*},张吉明,朱 刚,陈永泰,王塞北,李再久 (昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,昆明 650106)

摘 要: 对经过连续铸造、固溶和冷拉拔的 Cu-Cr-Ag-Y 合金进行时效处理,研究了时效工艺参数 对合金组织和性能的影响,探讨了合金的时效特征,并在自制磨损试验机上对合金线材进行载流滑 动磨损试验。结果表明: 铜基体中球形第二相的均匀析出是合金综合性能提高的根本原因。 Cu-0.6Cr-0.15Ag-0.03Y 合金经 450℃/4 h 时效处理后可以获得较好的综合性能,其显微硬度与导电 率达到 245Hv 和 80.7% IACS。随着加载电流的增加,合金磨损量变大,其载流磨损机制为电侵蚀 磨损、磨粒磨损和粘着磨损。

关键词:金属材料; Cu-Cr-Ag-Y 合金; 时效处理; 组织与性能; 载流磨损 中图分类号: TH117.3 文献标识码: A 文章编号: 1004-0676(2014)S1-0062-05

Aging Characteristics and Electrical Sliding Wear Properties of Cu-Cr-Ag-Y Alloy with High Strength and High Conductivity

WANG Song, XIE Ming^{*}, ZHANG Jiming, ZHU Gang, CHEN Yongtai, WANG Saibei, LI Zaijiu (State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China)

Abstract: Effects of aging process parameters on microstructures and properties of a Cu-Cr-Ag-Y alloy which was produced by continuous casting, solution-treated and cold draw were investigated, and the aging characteristics of the alloy was analyzed. The electrical sliding wear experiment was carried out using a self-made electrical wear tester. The results reveal that the uniform precipitation of the spherical second phase from the copper matrix is the root cause of the improvement of comprehensive performance. A better combination of properties is obtained for the Cu-0.6Cr-0.15Ag-0.03Y alloy aged at 450°C for 4 h, the micro-hardness and electrical conductivity of the alloy are 245Hv and 80.7%IACS, respectively. The wear loss of the alloy increased with increasing electrical current, and its electrical sliding wear mechanism is the electrical erosion wear, abrasive wear and adhesion wear.

Key words: metal materials; Cu-Cr-Ag-Y alloy; aging; microstructure and property; electrical sliding wear

铜铬系合金具有优异的导电与导热性能、较好 的机械强度与塑性以及优良的耐磨损性能,是一种 理想的电气工程材料^[1-3]。随着高速电气化列车的不 断发展,对铜合金架空接触导线提出了更高的性能 要求。如何解决铜合金导电性与强度同时提升的矛 盾,以及进一步改善其载流摩擦磨损性能,成为了 当前材料工作者面临的新课题^[4-10]。河南科技大学 苏娟华等^[11]试图采取不同固溶方式来优化快速凝

*通讯作者:谢明,男,博士,研究员,研究方向:稀贵金属粉末冶金新材料。E-mail: powder@ipm.com.cn

收稿日期: 2014-07-03

基金项目:国家自然科学基金项目(51164015)、云南省省院省校科技合作项目(2012IB002)、云南省应用基础研究项目(2011FB126)和昆明市科技创新团队项目(20120101AR070005)。

第一作者:王 松,男,硕士,工程师,研究方向:稀贵金属电接触材料。E-mail: fenmoyejin@qq.com

固 Cu-Cr-Sn-Zn 合金的组织性能, 虽获得了晶粒细 小、析出相稠密, 硬度为 179 HV 的引线框架材料, 但其导电率相对偏低(60%IACS)。中南大学周海涛 等^[12]创新性地提出了一种二级时效工艺来改善合 金的综合性能, 在保持合金高电导率(80%IACS)的 同时,制得了抗拉强度为 565MPa, 软化温度为 560 ℃的 Cu-Cr-Zr 合金材料。西安理工大学刘勇等^[13] 在 Cu-Cr-Zr 合金材料。西安理工大学刘勇等^[13] 在 Cu-Cr-Zr 合金材料。西安理工大学刘勇等^[13] 在 Cu-Cr-Zr 合金材料。西安理工大学刘勇等^[13] 在 Cu-Cr-Zr 合金材料。西安理工大学刘勇等^[14] 在 Sag量, 研究发现, Y 在铜合金熔炼过程中易于氧、 硫和某些杂质结合形成高熔点化合物并进入渣相, 起到除杂和净化作用, 使合金硬度得到提升, 但导 电率有所降低。有研究表明^[14],稀土元素在Cu-Cr-Zr 合金含量不宜过高, 合适的加入量应为 0.01%~ 0.03%。

鉴于此,本研究在高强高导 Cu-Cr-Ag 合金中 引入质量分数为0.03%稀土元素 Y,采用连续铸造、 固溶处理、冷拉拔、时效处理等工艺制得高强高导 电合金线材。研究了时效工艺参数对 Cu-Cr-Ag-Y 合金显微组织、显微硬度和导电率的影响。基于合 金导线的实际应用考虑,进一步研究了 Cu-Cr-Ag-Y 合金在载流条件下的电滑动磨损行为。

1 实验

1.1 材料制备

以纯度>99.9%(质量分数)的铜、铬、银和钇金 属为原材料,合金的名义成分(质量分数)为 Cu-0.6Cr-0.15Ag-0.03Y。采用日本 ASABA 型高速连铸 炉制得直径为20mm的合金棒材。合金线材在850 ℃/3h条件下固溶处理并水淬,随后在室温下进行 多道次冷拉拔至直径为8mm线材。采用OTF-1200X-S型管式电阻炉对合金线材进行时效处理, 以氮气作为保护气体,炉膛控温精度为±3℃。

1.2 组织分析及性能测试

利用日本岛津 HMV-FA2 型显微维氏硬度计测 定试样的硬度,载荷为 1.961 N,保压时间为 10 s, 每个试样测量 5 次取其平均值。采用 FD101 型金属 导电率测试仪测量合金的导电率,测量精度为± 0.1%IACS。利用 Leica DM4000M 型金相显微镜观 察合金显微组织,利用 Hitachi S-3400N 型扫描电子 显微镜观察合金载流磨损表面形貌,进而研究其磨 损机制。在自制磨损试验机上进行载流滑动磨损试 验,将 Cu-Cr-Ag-Y 合金线材安装于直径为 200 mm 的转盘上,滑块为锌白铜,滑块与合金线材之间的 接触压力为 20 N,摩擦线速度为 2 m/s。加载的电 流设为 0、5、10、15 和 20 A,摩擦时间为 6 h。

2 结果与讨论

2.1 不同时效温度条件下合金的显微组织

对 Cu-Cr-Ag-Y 合金线材进行时效处理,其目的是使合金化元素以一定的形式及形状从过饱和铜基体中析出,并弥散地分布在基体中,进而达到同时提高合金强度和导电性能的目的。图1给出了时效时间为4h、不同时效温度工艺条件下,Cu-0.6Cr-0.15Ag-0.03Y 合金显微组织照片。

图 1 时效态 Cu-Cr-Ag-Y 合金的显微组织 Fig.1 Microstructures of Cu-Cr-Ag-Y alloy after aging treatment [(a). 350°C/4 h; (b). 450°C/4 h; (c). 550°C/4 h]

由图 1(a)可知,在 350℃/4 h 时效条件下,第二 相在基体晶界和晶粒内部均有析出,但第二相析出 的数量较少,尺寸较小,合金此时处于欠时效状态。 另外,在铜基体中还可以明显观察到片状孪晶的存 在。这是因为合金在时效前进行过一定量的冷变形, 且铜属于低层错能的面心立方金属,时效时,会伴 随再结晶过程,由于层错的存在,容易在铜基体三 叉晶界处以层错为核形成片状孪晶,使总界面能减 少。图 1(b)所示为合金在 450℃/4 h 时效条件下第二 相的分布,该条件下第二相的数量明显增加,析出 较为完全,第二相呈球状弥散分布于基体中,其尺 寸在 1~5 µm 之间,此时的时效效果较为理想。图 1(c)所示为合金在 550℃/4 h 时效条件下第二相的形 貌与分布,可以看出第二相出现了相互连接,发生 了不同程度长大,第二相尺寸在 5~15 µm 之间,合 金已明显处于过时效状态。

2.2 时效工艺对合金显微硬度的影响

图2所示为Cu-0.6Cr-0.15Ag-0.03Y合金经350、 450以及550℃时效时,合金的显微硬度值随时效时 间的变化规律曲线。

Fig.2 Microhardness of Cu-0.6Cr-0.15Ag-0.03Y alloy under different aging conditions

由图 2 可知,在时效的起始阶段,合金的显微 硬度值均先随着时效时间的延长而增大,当合金的 显微硬度达到峰值后,合金的显微硬度随着时效时 间的延长而减小,且时效温度越高,合金显微硬度 达到峰值所用的时间越短。合金在 350℃时效,当 时效时间为 5 h 时,其显微硬度达到最大值 231 Hv; 450℃时效处理时,合金的显微硬度于 4 h 左右达到 最大值,此时的显微硬度值为 245 Hv,随着时效时 间继续延长,其显微硬度逐渐降低;合金经 550℃ 时效处理的显微硬度峰值为 239 Hv,时效时间为 2 h,而后硬度随时效时间的延长而急剧降低,当时 效至 6 h 时,显微硬度降至 173 Hv。合金在 350℃ 时效处理时,由于时效温度相对较低,合金中原子 的扩散能力较弱,基体中第二相的析出速率较慢且 析出相不易长大,合金处于欠时效阶段,故合金达 到显微硬度最大值所用的时间较长。而合金在 450 ℃时效处理时,合金中原子的扩散能力相对变强, 第二相的析出速率变快,因而合金达到显微硬度峰 值所用的时间较少。当时效时间继续延长至5h后, 合金处于过时效状态,基体中的部分析出相出现过 度生长,破坏了析出相和基体之间的共格或半共格 关系,于是合金的显微硬度出现降低趋势^[15]。时效 温度为 550℃时,合金中析出相的析出速率加快, 其显微硬度在2h左右就可达到峰值。但由于时效 温度过高,析出相的长大速度较快,使合金的显微 硬度达到峰值以后便显著下降。

2.3 时效时间对合金导电率的影响

图 3 所示为 Cu-0.6Cr-0.15Ag-0.03Y 合金 450℃ 时效不同时间后,其导电率的变化规律曲线。

图 3 Cu-0.6Cr-0.15Ag-0.03Y 合金的导电率与 时效时间的关系曲线

Fig.3 Curve of electrical conductivity at different aging time for the Cu-0.6Cr-0.15Ag-0.03Y alloy

从图 3 可以得知,合金在 450℃温度下进行时 效处理时,在时效初期合金的导电率迅速上升,达 到某一值后逐渐平缓,最后趋于恒值。这是由于时 效初期合金中溶质原子析出速度较快,溶质原子对 电子的散射作用减弱明显,导电率迅速升高。合金 中的溶质原子的持续析出会使基体的过饱和度不断 下降,第二相的析出速度也逐步减慢,合金的导电 率增加幅度减少。随着时间的继续延长,基体中溶 质原子几乎全部析出,所以导电率最后趋于稳定值。 根据 Mathiessen 理论,合金中析出相对电子的散射 能力要低于固溶体对电子散射能力,因此,析出相 的析出,有利于 Cu-Cr-Ag-Y 合金导电率的提高。 Cu-0.6Cr-0.15Ag-0.03Y 合金在 450℃时效 4 h 时, 其导电率可达到 80.7% IACS。

2.4 Cu-Cr-Ag-Y 合金的载流磨损特征

取最优时效工艺(450℃/4h)条件下的 Cu-0.6Cr-0.15Ag-0.03Y 合金线材作为试验的样品,在自制载 流磨损试验上对其进行不同电流条件下的磨损试 验。图4给出了相应的试验结果。

由图 4 可以直观地看出,载流磨损试验持续 6 h 后,不同电流条件下,合金的磨损量差别较大。随 着电流的增大,合金磨损量显著增加,电流的作用 表现得更为明显。合金的磨损与其接触压力、磨损 时间和接触面温度有关,当前两个因素不变时,磨 损量就直接受控于接触面温度。电流作用下,合金 磨损表面产生的热量主要有摩擦热、接触电阻产生 的焦耳热以及电弧放热,而其中的焦耳热和电弧放 热与加载的电流强度成正比。因此,电流愈大,接 触面所受热量越大,温度越高,导致合金硬度不同 程度下降,基材更容易被磨损。本试验中,高强高 导 Cu-0.6Cr-0.15Ag-0.03Y 合金线材经 6 h/20 A 载流 磨损后,其质量损失达到13.13g。

为进一步研究合金的载流磨损机制,对合金的 载流磨损表面形貌进行了表征,其结果如图5所示。

[(a). 0 A; (b). 10 A; (c). 20 A]

由图 5(a)可知,未加载电流时,Cu-Cr-Ag-Y 合金磨损表面呈现出大小不一的剥落坑和犁沟,此时合金的磨损形式主要为粘着磨损与磨粒磨损。在合金线材上加上 10 A 电流后,合金的表面形貌了发生改变,出现了明显的电烧蚀迹象以及沿滑动方向的塑性变形痕迹。这是由于电弧的作用在合金摩擦表面产生大量电弧热,导致磨损表面局部温度急剧升高,材料发生软化,塑性变形被加速,进而加剧磨损。电烧蚀是由于摩擦磨损过程中,摩擦副之间产生电弧放电现象,电弧产生的高温使得试样表面凸起部分烧蚀熔化,形成电烧蚀区域,见图 5(b)所示。此时合金的磨损形式主要为电侵蚀磨损、磨粒磨损和粘着磨损。当进一步增大电流至 20 A 时,合金磨

损表面的犁沟变得稀少,出现较深的电侵蚀孔隙或 裂纹,磨损表面形成凸起和棱角,如图 5(c)所示。 这些凸起和棱角随后会因电弧放电产生的热量不断 被烧蚀掉,而孔隙或裂纹的存在也会对合金耐磨性 能造成不利的影响,两者均会加剧合金载流条件下 磨损的程度。

3 结论

(1) 时效处理后, Cu-Cr-Ag-Y 合金基体过饱和 固溶体中会析出近球状的第二相。基体中第二相的 均匀析出是合金显微硬度和导电率同时提高的原 因。经 450℃/4 h 时效处理后, Cu-0.6Cr-0.15Ag0.03Y 合金可以获得较好的力学与电学性能,其显 微硬度与导电率分别为 245 Hv 和 80.7% IACS。

(2) 未加载电流条件下,Cu-Cr-Ag-Y 合金磨损 形式主要为粘着磨损与磨粒磨损。加载电流后,其 磨损形式主要为电侵蚀磨损、磨粒磨损和粘着磨损。 且随着加载电流的增大,合金的磨损程度显著加剧。

参考文献:

- [1] 吴朋越,谢水生,黄国杰. 高速列车用铜合金接触线用 材料及其加工工艺[J]. 稀有金属,2006,30(2):203-208.
 Wu P, Xie S, Huang G Materials and process technics of copper contact wires for high-speed train[J]. Chinese Journal of Rare Metals, 2006, 30(2): 203-208.
- [2] 王松,张吉明,陈永泰,等.时效态 Cu-1.5%Cr 合金的 组织与性能研究[J].稀有金属与硬质合金,2014,42(2):
 64-68.

Wang S, Zhang J, Chen Y, et al. Research on microstructures and properties of aged Cu-1.5%Cr alloy[J]. Rare Metals and Cemented Carbides, 2014, 42(2): 64-68.

- [3] Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304: 422-426.
- [4] Su J H, Dong Q M, Liu P, et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering A, 2005, 392: 422-426.
- [5] Xie H F, Mi X J, Huang G J, et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy[J]. Rare Metals, 2011, 30(6): 650-656.
- [6] 慕思国,曹兴民,汤玉琼,等.时效态 Cu-Cr-Zr-Mg-RE 合金的组织与性能[J].中国有色金属学报,2007,17(7): 1112-1118.
 Mu S, Cao X, Tang Y, et al. Microstructure and properties of aging Cu-Cr-Zr-Mg-RE alloy[J]. The Chinese Journal

of Nonferrous Metals, 2007, 17(7): 1112-1118.

- [7] Li H Q, Xie S S, Mi X J, et al. Phase and microstructure analysis of Cu-Cr-Zr alloys[J]. Journal of Materials Science & Technology, 2007, 23(6): 795-800.
- [8] 陈小红,刘平,田保红,等. Cu-15Cr-0.1Zr 原位复合材
 料中纤维相的组织演变[J]. 功能材料, 2008, 39 (12):
 2011-2014.

Chen X, Liu P, Tian B, et al. Microstructure evolvement

of Cr fibers in Cu-15Cr-0.1Zr in-situ composite[J]. Journal of Functional Materials, 2008, 39(12): 2011-2014.

- [9] Vinogradova A, Patlanb V, Suzukib Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing[J]. Acta Materialia, 2002, 50(7): 1639-1651.
- [10] 齐卫笑, 涂江平, 杨友志, 等. 时效处理对低溶质 Cu-Cr-Zr 合金力学和电滑动磨损性能的影响[J]. 摩擦 学学报, 2001, 21(6): 405-409.
 Qi W, Tu J, Yang Y, et al. Effect of aging treatment on

mechanical and sliding wear properties of dilute solute Cu-Cr-Zr alloy under electric current[J]. Tribology, 2001, 21(6): 405-409.

[11] 苏娟华,董企铭,刘平,等.不同固溶方式对引线框架 Cu-Cr-Sn-Zn 合金时效组织和性能的影响[J].金属热处 理, 2005, 30(5): 49-52.

Su J, Dong Q, Liu P, et al. Effects of different solution processes on microstructure and properties of the aged Cu-Cr-Sn-Zn alloy used in lead frame[J]. Heat Treatment of Metals, 2005, 30(5): 49-52.

[12] 周海涛, 钟建伟, 周啸, 等. 多级形变时效对 Cu-Cr-Zr 合金组织和性能的影响[J]. 材料热处理学报, 2009, 30(3): 141-145.

Zhou H, Zhong J, Zhou X, et al. Effects of multi-step thermomechanical treatments on microstructure and properties of Cu-Cr-Zr alloy[J]. Transaction of Materials and Heat Treatment, 2009, 30(3): 141-145.

- [13] 刘勇, 刘平, 李伟, 等. Cu-Cr-Zr-Y 合金时效析出行为研究[J]. 功能材料, 2005, 36(3): 377-379.
 Liu Y, Liu P, Li W, et al. Aging precipitation behavior of Cu-Cr-Zr-Y alloy[J]. Journal of Functional Materials, 2005, 36(3): 377-379.
- [14] Li H Q, Xie S S, Mi X J, et al. Influence of Cerium and Yttrium on Cu-Cr-Zr alloys[J]. Journal of Rare Earths, 2006, 24(Spec. Issue): 367-371.
- [15] 王俊峰, 贾淑果, 陈少华, 等. 热轧态 Cu-Ni-Si-Mg 合金的时效动力学[J]. 材料热处理学报, 2012, 33(7): 33-36.

Wang J, Jia S, Chen S, et al. Aging kinetics of Cu-Ni-Si-Mg alloy[J]. Transaction of Materials and Heat Treatment, 2012, 33(7): 33-36.