Preparation and Performances Analysis of a New Ag-CuO-La₂O₃ Electrical Contact Material

ZHANG Naiqian¹, WANG Song², SUN Shaoxia², WANG Saibei², XIE Ming², HU Jieqiong²

(1. Shenyang Liming Aero-engine (Group) Co. Ltd., Shenyang 110043, China; 2. State Key Laboratory of Advanced Technologies for Comprehensive Utilization, Kunming Institute of Precious Metals, Kunming 650106, China)

Abstract: A new electrical contact material, Ag-CuO-La₂O₃, was produced by chemical coating and powder metallurgy method, and its microstructure and performance were investigated. The results show that fine oxides of CuO and La₂O₃ have a uniform distribution in the silver matrix. Its density, resistivity and micro-hardness(Hv_{0.2}) is 9.77 g·cm⁻³, 2.36 μ Ω·cm and 113 respectively. Compared with convenient Ag-SnO₂ electrical contact materials prepared by the same process, the new material has superior room temperature processing performance, better ability of anti-arc erosion and longer service life. The Ag-CuO-La₂O₃ material may be substitute for Ag-SnO₂ as a new electrical contact material. **Key words:** electrical contact material; Ag-CuO-La₂O₃; microstructure; performance; service life **CIF number:** TG146.3⁺2 **Document Code:** A **Article ID:** 1004-0676(2015)S1-0009-05

新型 Ag-CuO-La2O3 电接触材料的制备及其性能分析

张乃千¹, 王 松², 孙绍霞², 王塞北², 谢 明², 胡洁琼²
(1. 沈阳黎明航空发动机(集团)有限责任公司, 沈阳 110043;
2. 昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室, 昆明 650106)

摘 要:采用化学包覆和粉末冶金法制备了新型 Ag-CuO-La₂O₃ 电接触材料,研究了新材料的微观 结构和性能。结果表明,细小的 CuO 和 La₂O₃ 颗粒高度弥散地分布于银基体中,新材料的密度为 9.77 g·cm⁻³,电阻率为 2.36 μΩ·cm,显微硬度(Hv_{0.2})为 113。与相同工艺制备的 Ag-SnO₂传统电接触 材料比较,新材料具有更好的室温加工性能、更优异的耐电弧侵蚀能力以及更长的电寿命。 Ag-CuO-La₂O₃ 新材料有望成为一种替代传统 Ag-SnO₂的新型电接触材料。

关键词: 电接触材料; Ag-CuO-La₂O₃; 微观结构; 性能; 电寿命

Silver-metal oxide electrical contact materials, including Ag-CdO, Ag-In₂O₃, Ag-CuO and Ag-ZnO, are widely used in low voltage apparatus such as relays, contactors, circuit breakers, and motor starters^[1-6]. They generally contain two components. One is pure silver which can provide high electrical conductivity and has antioxidant and anti-nitride properties. The other is metal oxides, which can decide arc breaking performance and improve electrical contact performance of the contact materials^[7-10]. The oxides with high stability cannot decompose and sublimate rapidly and suspend in the Ag pool to increase the viscosity of Ag liquid in order to prevent the splash erosion. Therefore the arc erosion may be reduced and service life of the contact may be prolonged. Ag-CdO contact material is one of the best among these silver-metal oxide electrical contact materials for its good ability of anti-arc

Received: 2015-06-30

Foundation item: National Natural Science Foundation of China (U1302272; 51267007; 51164015).

First author: ZHANG Naiqian, male, engineer. Research direction: electrical contact material. E-mail: fenmoyejin@qq.com

erosion and low contact resistance. The Ag-CdO contact material has been replaced gradually by some new contact materials such as Ag-SnO₂ because of its damages to the human health and environment^[11-16].

The rare earth oxides are stable compounds that have high decomposition temperature and formation heat. In recent years, rare earth oxides have been used as an addition to optimize the mechanical and contact properties of the silver-metal oxide electrical contact material^[17-18]. In this work, La₂O₃ is used as a stable oxide and the Ag-CuO-La₂O₃ electrical contact materials were fabricated by chemical coating and powder metallurgy method. The microstructure and performance of the material were also comparatively investigated. The purpose of this paper is to develop a new kind of silver-multi metal oxide electrical contact material with good combined performances.

1 Experiment

1.1 Ag-CuO-La₂O₃ material preparation

The chemical coating method was adopted to Ag-CuO-La₂O₃ compound powder. obtain Its composition is Ag-8%CuO-2%La₂O₃ (mass fraction). The specific chemical coating process was as follows: CuO and La₂O₃ were mixed together according to a certain component ratio then put into a reactor containing deionized water. combined with mechanical agitation and ultrasonic vibration to form suspension liquid. The AgNO₃ and ammonia were added into the suspension liquid to form silver-ammonia complex, then slowly doped with hydrazine hydrate, which reduced Ag from the solution and coated Ag on the surface of the oxide particles. Finally, the coating mixed powders were washed, filtrated and was dried to obtain Ag-CuO-La₂O₃ compound powders.

The Ag-CuO-La₂O₃ compound powders were mixed in a ball mill for 24 h, and then moulded with cold extrusion press (100 MPa) to obtain the ingot. The ingot was sintered at 850 $^{\circ}$ C for 2 h, and then it was made to a wire of 8mm in diameter by hot extrusion press, which was further made to a wire of 1.36 mm in diameter with cold drawing. The contact sample was made into the shape of a rivet shape. The comparative study material $Ag-10\%SnO_2$ (mass fraction) was prepared by the same process.

1.2 Characterization method

Microstructure observations were carried out by Hitachi S-3400N scanning electron microscope. The tensile test was performed by AG-IC10 kV tester at room temperature with a crosshead speed of 2 mm/min. The micro-hardness was determined using HMV-FA2 micro Vickers hardness tester with a load of 1.961 N, a holding time of 10 s and each sample was measured five times to obtain the value. The electrical conductivity was determined by measuring the alloy samples using FD101 metal conductivity tester, and every sample was tested for two times. The electrical contact experiment was held by JF04C. The arc erosion experimental parameters are showed in Tab.1. The arc erosion was determined by the mass loss of the contacts.

Tab.1 Parameters of arc erosion experiment 表 1 电弧侵蚀实验参数

Variables	Magnitude
Voltage /V	20~25
Current/A	10~15
Distance between the contacts/mm	1.0
Contact pressure/cN	70
Contact frequency/(times/min)	60

2 Results and discussion

2.1 Surface morphology

Fig.1 shows the surface morphology and EDS pattern of the Ag-CuO-La₂O₃ electrical contact material specimen. It can be found that the CuO and La₂O₃ oxides with nearly spherical particles are uniformly distributed in the silver matrix. For the oxide particles reinforced silver matrix electrical contact materials, it is very important to obtain homogeneous reinforcements in the silver matrix in order to enhance mechanical and electrical contact properties. Moreover, it can be seen from Fig.1, there are no clear visible pores on the surfaces of the sample, and the Ag matrix phase and oxide particles do not

show interfacial debonding, indicating the good wettability between oxide particles and the Ag phase. This proves that the chemical coating-powder

metallurgy method is a very promising technique for uniformity and full densification of Ag-CuO-La₂O₃ electrical contact material.

Fig.1 Microstructure of Ag-CuO-La₂O₃ material (a) and EDS pattern (b) 图 1 Ag-CuO-La₂O₃ 材料的(a)微观组织及其(b)ESD 图谱

2.2 Physical properties

The physical properties of the electrical contact materials listed in Tab.2. The relative density of the Ag-CuO-La₂O₃ material is higher than that of Ag-SnO₂ material prepared by the same method. The electrical conductivity of Ag-CuO-La₂O₃ material is 2.36 $\mu\Omega$ ·cm, which decreases by 0.13 $\mu\Omega$ ·cm compared with that of Ag-SnO₂ material. The electrical resistivity is a very important property for the electrical contact materials. The lower the electrical resistivity is, the better the electrical contact properties such as contact resistance, anti-welding and anti-arc erosion are. The micro-hardness of the Ag-CuO-La₂O₃ material is also higher than that of Ag-SnO₂, which may be contributed to the dispersion strengthening of fine CuO and La₂O₃ particles.

Tab.2 Physical properties of the samples 表 2 试验样品的物理性能

Motorial	Density Relative		Electrical resistivity	11	
Material	$/g \cdot cm^{-3}$	density/%	$/\mu\Omega\cdot cm$	ΠV _{0.2}	
Ag-SnO ₂	9.72	97.6	2.49	95	
Ag-CuO-La ₂ O ₃	9.77	98.8	2.36	113	

2.3 Processing performance

Fig.2 shows the relationship between tensile strength and drawing deformation of Ag-SnO₂ and Ag-CuO-La₂O₃ material at room temperature. All wire

samples were annealed at 400 °C for 2 h before cold drawing. The tensile strength of Ag-CuO-La₂O₃ wire is 262 MPa, which increases by 26 MPa compared with that of Ag-SnO₂ wire. It can be found form Fig.2 that the tensile strength gradually increases with the increasing deformation. When the deformation reach to 18%, the tensile strength of the Ag-CuO-La₂O₃ comes reach to 352 MPa, which is higher than that of Ag-SnO₂. This proves that the ability resistant to deformation of Ag-CuO-La₂O₃ is better than that of Ag-SnO₂ at room temperature.

Fig.3 shows the relationship between elongation and drawing deformation of Ag-SnO₂ and Ag-CuO-

La₂O₃ at room temperature.

Fig.3 Relationship between elongation and drawing deformation 图 3 伸长率与拉拔变形量的关系曲线

It can be seen that the elongation of the two kinds of electrical contact materials decreases rapidly with the

Tab.3 Mass change of the contacts over 50000 times breaks 表 3 50000 次分段后触头质量变化

increasing deformation. However, under the same deformation condition, the elongations of the Ag-CuO-La₂O₃ are higher than that of Ag-SnO₂. The elongation of Ag-CuO-La₂O₃ is 18%, while 13% of Ag-SnO₂.

2.4 Electrical contact performance

Tab.3 shows the mass changes of Ag-SnO₂ and Ag-CuO-La₂O₃ contacts over 50000 times break operations under DC 25 V/15 A. As listed in Tab.3, there is a net transfer of material from the anode to the cathode and weight loss to the environment. The weight of transfer and weight loss to the environment of Ag-CuO-La₂O₃ contacts is only 5 mg and 3 mg, respectively, which is lower than that of Ag-SnO₂ contacts. The result indicates that the new material, Ag-CuO-La₂O₃, has better ability of anti-arc erosion. This is because the stable La₂O₃ particles increase the viscosity of molten pool of silver and thus reduce the splatter erosion of liquid silver.

Contacts	Weight of a	Weight of anode/mg		athode/mg	Weight of transfor/mag	Weight loss/mg
	Before erosion	After erosion	Before erosion	After erosion	weight of transfer/fing	weight loss/llig
Ag-SnO ₂	5101	5087	5112	5122	10	4
Ag-CuO-La ₂ O ₃	5129	5121	5134	5139	5	3

In this study, the break operation times of the first welding was defined as the service life of the material. The service life testing results of Ag-SnO₂ and Ag-CuO-La₂O₃ contacts are given in Tab.4.

Tab.4 Service life test comparison of the contacts 表 4 触头电寿命测试结果比较

Contacts	Service life under DC resistance load				
	20 V/10 A	20 V/15 A	25 V/10 A	25 V/15 A	
Ag-SnO ₂	42114	40096	39914	38825	
Ag-CuO-La ₂ O ₃	84071	80202	79817	77498	

According to Tab.4, the service life of the Ag-CuO-La₂O₃ is twice as long as that of the Ag-SnO₂ made by same process under DC testing. The Ag-CuO-La₂O₃ electrical contact material has fine microstructure, good comprehensive mechanical

properties and low electrical resistivity, which is the reason of better service life for the material.

3 Conclusions

(1) A new Ag-CuO-La₂O₃ electrical contact material has been successfully produced by chemical coating and powder metallurgy method. The oxides are uniformly distributed in the silver matrix.

(2) The new material has good physical properties, its density, resistivity and micro-hardness(Hv_{0.2}) are 9.77 g·cm⁻³, 2.36 $\mu\Omega$ ·cm and 113, respectively.

(3) Compared with convenient $Ag-SnO_2$ material, the new material has superior room temperature processing performance, better ability of anti-arc erosion and longer service life.

References:

- Wang J B, Zhang Y, Yang M G, et al. Observation of arc discharging process of nanocomposite Ag-SnO₂ and La-doped Ag-SnO₂ contact with a high-speed camera[J]. Materials Science & Engineering B, 2006, 131(1): 230-234.
- [2] Ćosović V, Ćosović A, Talijan N, et al. Improving dispersion of SnO₂ nanoparticles in Ag-SnO₂ electrical contact materials using template method[J]. Journal of Alloys and Compounds, 2013, 567: 33-39.
- [3] Qiao X Q, Shen Q H, Zhang L J, et al. A novel method for the preparation of Ag/SnO₂ electrical contact materials[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2614-2618.
- Findik F, Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials[J]. Materials & Design, 2003, 24(7): 489-492.
- [5] Wang S, Zheng T T, Xie M, et al. Internal oxidation thermodynamics and isothermal oxidation behavior of AgSnO₂ electrical contact materials[J]. Rare Metal Materials and Engineering, 2014, 43(4): 796-798.
- [6] Wang X H, Yang H, Chen M, et al. Fabrication and arc erosion behaviors of AgTiB₂ contact materials[J]. Powder Technology, 2014, 256: 20-24.
- [7] Xu C H, Yi D Q, Wu C P, et al. Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders[J]. Materials Science and Engineering A, 2012, 538: 202-209.
- [8] Liu X M, Wu S L, Paul K, et al. Effects of coating process on the characteristics of Ag-SnO₂ contact materials[J]. Materials Chemistry and Physics, 2006, 98(2-3): 477-480.
- [9] Swingler J, Sumption A. Arc erosion of AgSnO₂ electrical contacts at different stages of a break operation[J]. Rare

Metals, 2010, 29(3): 248-254.

- [10] Lungu M, Gavriliu S, Canta T, et al. AgSnO₂ sintered electrical contacts with ultrafine and uniformly dispersed microstructure[J]. Journal of optoelectronics and advanced materials, 2006, 8(2): 576-581.
- [11] Chen S, Guan W M, Zhang K H, et al. Experiment and finite element method analysis mass erosion and transfer of Ag/La₂NiO₄-based electrical contacts during operation[J]. Rare Metals, 2013, 32(1): 93-99.
- [12] Chen X H, Jia C C, Liu X B. Effects of silver powder particle size on the microstructure and properties of Ag-Yb₂O₃ electrical contact materials prepared by spark plasma sintering[J]. Rare Metals, 2010, 29(4): 366-370.
- [13] Verma P, Pandey O P, Verma A. Influence of metal oxides on the arc erosion behaviour of silver metal oxides electrical contact materials[J]. Journal of Materials Science & Technology, 2004, 20(1): 49-52.
- [14] Zhou Y H, Zhou X L, Tao Q Y, et al. Research progress of AgMeO electrical contact materials[J]. Precious Metals, 2014, 35(S1): 100-107.
- [15] Wang J Q, Wang H T, Wen M, et al. Testing results analysis of contact materials' electrical contact performance[J]. Journal of Zhejiang University SCIENCE A, 2007, 8(3): 459-463.
- [16] Zheng J, Li S L, Dou F Q, et al. Preparation and microstructure characterization of a nano-sized Ti⁴⁺-doped AgSnO₂ electrical contact material[J]. Rare Metals, 2009, 28(1): 19-23.
- [17] Lu J G, Wang J Q, Zhao J Y, et al. A new contact material-Ag/SnO₂-La₂O₃-Bi₂O₃[J]. Rare Metals, 2002, 21(4): 289-293.
- [18] Wang H T, Wang J Q, Du J, et al. Influence of rare earth on the wetting ability of AgSnO₂ contact material[J]. Rare Metal Materials and Engineering, 2014, 43(8): 1846-1849.