ICP-AES 测定等离子熔炼合金中的铂、钯和铑

刘 伟,刘 文^{*},金云杰,林 波,罗 仙,鲁俊余,姚艳波,马王蕊,崇 彪 (贵研资源(易门)有限公司,贵研铂业股份有限公司 稀贵金属综合利用新技术国家重点实验室,昆明 650106)

摘 要:建立了一种以碱熔-碲共沉淀分离、电感耦合等离子体发射光谱(ICP-AES)测定等离子熔炼 合金样品中铂、钯和铑含量的方法。研究了样品处理和测定条件。结果表明,样品与过氧化钠混匀, 在730℃马弗炉中保温 25 min 后,熔融物可用稀盐酸完全浸出;在盐酸介质中,加入碲溶液和二氯 化锡溶液微沸 30 min,所得铂、钯和铑共沉淀充分;在选定条件下,对铂、钯和铑含量为 0.5~7.0、 2.0~40.2 和 0.2~7.0 g/kg 的样品,测定相对标准偏差(*RSD*)分别为 0.44%~1.52%、0.58%~1.06%和 0.61%~1.98%,加标回收率分别为 99.4%~101%、99.1%~100.5%和 98.3%~101%。 关键词:分析化学;碱熔;共沉淀; ICP-AES;等离子熔炼;Fe-PGM 合金;铂;钯;铑 中图分类号: O655.23 文献标识码:A 文章编号: 1004-0676(2017)02-0072-07

Determination of Pt, Pd and Rh Contents in Plasma Smelting Alloy by ICP-AES

LIU Wei, LIU Wen^{*}, JIN Yunjie, LIN Bo, LUO Xian, LU Junyu, YAO Yanbo, MA Wangrui, CHONG Biao (Sino-Platinum Metals Resources (Yimen) Co. Ltd., State Key Laboratory Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinu Metals Co. Ltd., Kunming 650106, China)

Abstract: An ICP-AES method was established for determination of platinum, palladium and rhodium contents in the Fe-PGM alloy produced from plasma smelting process. Prior to ICP-AES measurements, the alloy was first pretreated by alkali fusion and then by tellurium co-precipitation separation. The conditions for the sample preparation and determination were investigated and optimized. When the alloy was fused with sodium peroxide in the muffle furnace at 730°C for 25 min, the resulting melt could fully be dissolved in diluted hydrochloric acid. Slightly boiling the solution for 30 min after the addition of the tellurium reagent and SnCl₂ would enhance the precipitation of platinum, palladium and rhodium. Under given conditions and for the Fe-PGM alloy containing $0.5 \sim 7.0$ Pt, $2.0 \sim 40.2$ Pd, and $0.2 \sim 7.0$ Rh in g/kg unit, *RSD* (*n*=7~9) and the recovery of standard addition were found to be $0.44\% \sim 1.52\%$, $99.4\% \sim 101\%$ for Pt, $0.58\% \sim 1.06\%$, $99.1\% \sim 100.5\%$ for Pd, and $0.61\% \sim 1.98\%$, $98.3\% \sim 101\%$ for Rh, respectively. **Key words:** analytical chemistry; alkali fusion; coprecipitation; ICP-AES; plasma smelting; Fe-PGM alloy; platinum; palladium; rhodium

铂、钯和铑是用于汽车尾气净化催化剂中促使 尾气排放物 CH、CO 和 NO_x充分转化为无害成分的 关键材料。报废的汽车尾气净化催化剂是重要的铂 族金属(PGM)二次资源,被称为"可循环再生的铂 矿"。采用等离子熔炼技术^[1]从二次资源中富集铂 族金属,回收率达到97%以上,处理量大且污染小, 环境友好,物料适应性广。等离子熔炼富集产物 Fe-PGM 合金中,铁占80%~90%、硅1%~10%,铂 0.05~1%、钯 0.2%~5%、铑 0.03%~1%,此外还含 有少量的锆、铈、磷和碳,进一步精炼提纯后可生

收稿日期: 2016-08-31

基金项目:稀贵金属综合利用新技术国家重点实验室项目(SKL-SPM-201541)、云南省地方标准制修订项目(DBZD-054-2015)。

第一作者:刘 伟,男,高级工程师,研究方向:贵金属分析应用与研究。Email: liuweiynkm@sina.com

^{*}通讯作者: 刘 文, 男, 高级工程师, 研究方向: 贵金属冶金研究与生产。Email: hxt1130@163.com

产出海绵铂、海绵钯和铑粉产品。

Fe-PGM 合金的价值较高,铂、钯和铑含量的 测定结果是 Fe-PGM 合金物料公平、公正交易的重 要参考,同时也是生产过程中考察金属平衡的重要 依据。因此,准确分析 Fe-PGM 合金中的铂、钯和 铑含量具有十分重要的意义。对铂族金属的分析要 求^[2],随着分析对象的变化和含量的不同,以及共 存元素的复杂程度而有所区别。如含量>20%的铂 族金属分析,相对允许差要求≤0.5%,通常采用重 量法或容量法;含量 5%~20%时,相对允许差要求 ≤1%,常用容量法;含量 1%~5%时,相对允许差 要求≤2%,可用容量法或仪器分析法。当含量<1% 时,往往需要先分离铂族金属,再用仪器测定。电 感耦合等离子体发射光谱法(ICP-AES)具有多元素 快速测定、较宽的线性范围、良好的精密度和检出 限等优点, 较原子吸收光度法和紫外可见分光光度 法在铂族金属分析中应用更普遍、适用,应用于中 低含量铂族金属多元素同时测定的研究报道[3-11]较 多。由于 Fe-PGM 合金中铂、钯和铑含量范围的特 殊性,重量法或容量法难以适用;原子吸收光度法 和紫外可见分光光度法的线性范围相对较窄,且只 能单元素逐个进行测定。采用 ICP-AES 法同时测定 铂、钯和铑是最佳选择。

由于高温熔炼所得 Fe-PGM 合金抗腐蚀强,即 使采用多种组合强酸、在高温高压下长时间溶解, 均不能完全溶解样品。因此,本文对碱熔处理 Fe-PGM 合金样品进行了研究,考虑到碱熔后所得 溶液共存元素干扰,盐效应严重,进一步研究了碲 共沉淀分离富集铂、钯和铑的方法,使所得试液可 用 ICP-AES 准确测定。

1 实验部分

1.1 仪器及设备

电感耦合等离子体发射光谱仪(美国 Perkin Elmer 公司 Optima 7000 DV 型 ICP-AES):中阶梯光 栅+高紫外灵敏度 CaF₂ 棱镜,光谱范围: 160~900 nm, 200 nm 处分辨率为 0.003 nm; 振动盘式研磨 仪(德国莱驰公司 RS200); 马弗炉(上海意丰电炉有 限公司 YFX 2/12 Q-GC); 高铝坩埚(容积 30 mL); G3 玻砂漏斗(容积 60 mL)。

1.2 试剂及标准

过氧化钠、盐酸、盐酸(1+9)、硝酸等试剂均为 分析纯,水为纯水。碲溶液(2.5 mg/mL, 20%盐酸); 二氯化锡溶液(1 mol/L, 30%盐酸)。铂标准贮存溶 液、钯标准贮存溶液、铑标准贮存溶液[(1000 μg/mL, 10%盐酸),国家钢铁材料测试中心钢铁研 究总院,国家标准溶液]。Fe-PGM 合金试验样: HF-23-150709-6(推荐值:铂 3.814 g/kg,钯 38.92 g/kg,铑 6.927 g/kg)。氩气(纯度不小于 99.99%)。

1.3 实验方法

1.3.1 试样分解

样品研磨至 150 目,称取约 0.25 g 试样于高铝 坩埚中,加入约 3 g 过氧化钠,搅拌,再覆盖约 2 g 过氧化钠,于 730℃马弗炉中熔融 25 min。取出, 冷却。将高铝坩埚置于 400 mL 烧杯中,加 100 mL 水,盖上表面皿,放置至反应停止后,加入 40 mL 盐酸,用少量盐酸(1+9)洗净高铝坩埚内、外壁,置 于电炉上加热至溶液清亮。

1.3.2 碲共沉淀分离

加入 20 mL 碲溶液,加热至微沸,滴加 8 mL 二氯化锡溶液,盖上表面皿,保持微沸约 30 min, 至沉淀絮凝,溶液清亮。取下,用水吹洗表面皿, 用玻砂漏斗过滤,用水洗涤烧杯及沉淀各 3~5 次, 弃去滤液。用 10 mL 热盐酸与硝酸混合酸溶解沉淀 于原烧杯中,用水洗涤漏斗 3~5 次,洗涤液接于原 烧杯中,盖上表面皿,低温蒸至湿盐状。取下,用 水吹洗表面皿,加 20 mL 盐酸,转入 250 mL 容量 瓶中,用水稀释至刻度,混匀。

1.3.3 测定

待 ICP-AES 仪器运行稳定后,选择射频功率 1.2 kW、载气流速 0.2 L/min、保护气流速 0.8 L/min、 冷却气流速 15 L/min、进样速率 1.5 mL/min、分析 线波长为 Pt 265.945 nm、Pd 340.485 nm、Rh 343.489 nm。径向观测、预燃时间 30 s、积分时间 5 s、积 分 2 次取平均值。

在上述选定的条件下,分别用配制好的混合标 准工作溶液(铂和钯浓度均为 0.50、5.0、20.0 和 50.0 mg/L,铑浓度为 0.25、2.5、10.0 和 25.0 mg/L)进行 标准化,测试分析试液,根据标准工作曲线自动进 行数据处理并输出铂、钯和铑的测定浓度,再计算 得出铂、钯和铑的含量。

2 结果与讨论

2.1 样品分解方法的选择

铂族金属样品常用的溶解方法有酸溶和碱熔 2 种方式。实验研究对比了 Fe-PGM 合金样品的 4 种

分解方法: 1) 常压下王水加热溶解6h; 2) 消化罐 盐酸-双氧水 150℃密闭消解 12h; 3) 盐酸溶解+余 渣碱熔; 4) 碱熔。

实验现象表明,方法 1)和 2)均有黑色不溶渣, 不能使 Fe-PGM 合金样品充分溶解;方法 3)采用酸 溶与碱熔相结合,能将样品完全溶解,但是样品分 解耗时 6 h 以上,处理流程过长,操作繁琐。

采用方法 4), 在一般的碱熔条件下(700℃保温 15 min)进行试验, Fe-PGM 合金熔融不完全。为此 进行了提高温度、延长时间的熔融条件试验。称取 3 g 过氧化钠和 0.25 g 试样,于高铝坩埚搅拌均匀, 再覆盖约 2 g 过氧化钠,置于马弗炉中,分别在 700、 715、730、745、760、775℃下保温 25 min,冷却。 熔融物以水和盐酸浸出。从实验现象可以看出, 730℃以下熔融,浸出后有不溶渣,熔融不完全; 730℃熔融,样品分解完全,坩埚腐蚀轻微;745℃ 以上,熔融物会爬壁溢出,对坩埚腐蚀较明显。最 终选定样品熔融条件为 730℃保温 25 min。

2.2 样品量的选择

样品磨制到粒度 0.1 mm (150 目),物料均匀性 和样品代表性满足取样和分析要求^[12]。依据切乔特 经验公式 $Q \ge Kd^2$ (均匀性系数 K 取 0.02),计算得到 最低称样量 Q 为 0.2 g。

以 Fe-PGM 合金 HF-23-150709-6 为试验材料, 分别称取 0.1、0.2、0.3 和 0.4 g, 各做 3 份平行样, 按实验方法处理后测定铂、钯和铑,结果列于表 1。

表1 试样量实验结果 (n=3)

Tab.1	The	experimental	results	of samp	ole weights	(n=3)	
					6	· /	

	-	-	-	
样量/g	元素	平均值/(g/kg)	RSD/%	较推荐值/%
	Pt	3.797	1.8	-0.45
0.1	Pd	38.93	1.3	0.03
	Rh	6.909	1.5	-0.26
	Pt	3.831	0.64	0.45
0.2	Pd	38.88	1.2	-0.10
	Rh	6.937	0.64	0.14
	Pt	3.815	0.82	0.03
0.3	Pd	38.89	1.2	-0.08
	Rh	6.913	0.78	-0.20
	Pt	3.769	1.0	-1.18
0.4	Pd	38.62	1.1	-0.77
	Rh	6.886	0.83	-0.59

由表1可知,称样量0.1g时,铂、钯和铑结果

的相对标准偏差(RSD)接近 2%;称样量 0.4 g时, RSD 接近 1%,但测定结果较推荐值偏低,主要原 因是称样过多不利于熔解和碲富集;称样量少虽然 有利于熔解和碲富集,但是不能低于最低取样量。 称样量取 0.2~0.3 g时,铂、钯和铑相对误差-0.20%~ 0.45%, RSD 接近 1%。为兼顾测定工作曲线的线性 范围,选择试样量为 0.25 g。

2.3 碲共沉淀分离铂、钯和铑的条件

碲共沉淀分离富集微量贵金属报道较多,但是 对于较高含量的铂、钯和铑的分离研究较少。文献 [13]报道的碲共沉淀介质为 4~5 mol/L 的盐酸体系, 加入 10 mL 碲溶液(2.5 mg/mL)和 4 mL 二氯化锡溶 液(1 mol/L),加热微沸 30 min,低于 5000 μg 铂、 钯和 2000 μg 的铑的回收率均大于 98%。

本文考察了在 4 mol/L 的盐酸体系中,更高含 量的铂、钯和铑的碲共沉淀回收率。分别加入铂、 钯各 10000 µg、铑 5000 µg,设定 30 min 和 60 min 的共沉淀时间,分别加入不同量的碲溶液和二氯化 锡溶液,处理后测定,计算铂、钯和铑的回收率, 结果列于表 2。

表2 不同碲共沉淀条件下铂、钯和铑的回收率

Tab.2 Recovery of platinum, palladium and rhodium under different Te co-precipitation conditions

共沉淀	碲溶液	二氯化锡	回收率/%						
时间/min	体积/mL	体积/mL	Pt	Pd	Rh				
	10	4	98.4	99.8	90.8				
30	15	6	99.4	99.6	94.8				
	20	8	99.6	100.3	98.8				
	10	4	98.9	99.5	92.8				
60	15	6	99.2	99.4	96.5				
	20	8	99.4	99.7	99.0				

由表 2 可知, 10 mL 碲溶液和 4 mL 的二氯化 锡溶液,保持微沸 30 min,铂、钯的回收率大于 98%, 铑的回收率 90%,碲溶液和二氯化锡溶液分别增加 至 1.5 倍和 2 倍时,铑的回收率接近 95%和 99%; 共沉淀时间增加至 60 min 时,在 3 种不同的试剂用 量下,铑的回收率均有一定的提高。根据实验结果, 本文选择的共沉淀条件为: 4 mol/L 的盐酸介质,20 mL 碲溶液,加热至微沸,滴加 8 mL 二氯化锡溶液, 保持微沸 30 min。

根据 Fe-PGM 合金中的钯含量高、铂和铑含量 低的实际情况,加入钯 25000 μg,铂、铑各 5000 μg,

元素

Pt

Pd

Rh

回收率/%

99.3

99.8

98.6

在选定条件下进行共沉淀分离实验,铂、钯和铑的 为回收率列于表 3。

从表 3 可知铂、钯和铑的共沉淀分离回收率均 大于 98.5%,表明此共沉淀条件应用于 Fe-PGM 合 金中铂、钯和铑的分离,回收率高,满足分析要求。 2.4 试液介质及其浓度的选择

2.4 风极开灰及兴杯及时起手

于 5%、10%、15%盐酸(*V/V*)介质中,各 5 μg/mL 铂、钯和铑的测定结果列于表 4。

表 4 不同盐酸浓度下的测定结果

Tab.4 Determination results in different concentrations of hydrochloric acid

元素	加入值/		测定值/(µg/mL)			偏差/%	
	(µg/mL)	5% HCl	10% HCl	15% HCl	5% HCl	10% HCl	15% HCl
Pt	5.00	5.082	4.968	4.783	+1.64	-0.64	-4.37
Pd	5.00	5.139	4.997	4.834	+2.78	-0.06	-3.32
Rh	5.00	5.153	5.028	4.862	+3.06	+0.56	-2.76

从表 4 可知,与标准工作溶液介质(10%盐酸) 匹配时,测定结果的偏差为-0.64%~0.56%,结果准 确;5%盐酸介质时,偏差为1.64%~3.06%,结果偏 高;15%盐酸介质时,偏差为-2.76%~-4.37%,结果 偏低。

最终共沉淀试液介质选择为10%盐酸,碲共沉 淀物采用王水溶解,浓缩赶硝,制备成10%盐酸介 质,试液中共存离子中有约0.2g/L的碲,对铂、钯 和铑的测定均没有干扰。

2.5 仪器工作条件的选择

研究了 ICP-AES 仪器不同的射频功率测定铂、 钯和铑的工作曲线、实际的检出限和稳定性。设定 射频功率为1.0、1.1、1.2、1.3 kW,其它条件参数 按仪器推荐值设定,测定铂、钯和铑标准工作溶液 制作工作曲线,测定空白10次,考察不同射频功率 对工作曲线和检出限的影响,结果列于表 5。 ICP-AES 法测定高浓度元素时,还需要关注稳定性。 稳定性除了受到试液介质(雾化效率)的影响,射频 功率也是重要影响因素。以 50.0 μg/mL 的铂、钯和 25.0 μg/mL 铑标准工作溶液,分别在射频功率 1.0、 1.1、1.2、1.3 kW 时,平行测定 2 次,谱线强度和 相对标准偏差统计同样列于表 5。

由表 5 可知,随着射频功率在 1.0~1.3 kW 逐渐 升高,铂工作曲线的斜率明显升高,检出限下降; 钯和铑的工作曲线斜率和检出限变化不明显。不同 的射频功率下,0.5~50 μg/mL 的铂、钯和 0.25~25 μg/mL 铑工作曲线相关系数均>0.9999,线性良好。 表5 射频功率对工作曲线、检出限和谱线稳定性的影响

表 3 选定条件下碲共沉淀铂、钯和铑的回收率

selected Te co-precipitation conditions

加入量/µg

5000

25000

5000

Tab.3 Recovery of platinum, palladium and rhodium under

Tab.5 The influence of RF power on working curve, detection limit and stability

	5				
射频功	元素分析	公支	检出限/	平均校	RSD/
率/kW	线/nm	赤十-华	$(\mu g/mL)$	正强度	%
	Pt265.945	3033	0.116	151772	0.51
1.0	Pd340.458	9583	0.053	479254	0.71
	Rh343.489	15920	0.072	334439	0.54
	Pt265.945	3440	0.095	171976	0.62
1.1	Pd340.458	10370	0.050	518906	0.91
	Rh343.489	16780	0.066	352176	0.57
	Pt265.945	3759	0.082	188023	0.57
1.2	Pd340.458	10990	0.045	549417	0.88
	Rh343.489	17480	0.060	367122	0.68
	Pt265.945	3935	0.080	196747	0.75
1.3	Pd340.458	11250	0.044	562079	1.06
	Rh343.489	17800	0.060	373564	0.98

射频功率从 1.0~1.3 kW 逐渐升高, 铂分析线强度明 显增强, 钯、铑分析线强度增加不明显; 射频功率 升高至 1.3 kW 时, 铂相对标准偏差变化不大, 钯、 铑相对标准偏差增大至 1%, 表明稳定性有所下降。

通过上述实验选定仪器测定工作条件为:射频 功率 1.2 kW,载气流速 0.2 L/min,保护气流速 0.8 L/min,冷却气流速 15 L/min,进样速率 1.5 mL/min, 径向观测,预燃时间 30 s,积分时间 5 s,积分 2 次 取平均值。分析线波长为 Pt 265.945 nm、Pd 340.485

nm $_{\sim}\,$ Rh 343.489 nm $_{\circ}\,$

2.6 方法精密度

分别测定不同批次 Fe-PGM 合金中的铂、钯和 铑,统计平均值和相对标准偏差列于表 6。由表 6

表6样品分析结果

Tab.6 Analysis results of the samples

可知,测得铂、钯和铑含量分别为 0.525~7.180、 2.453~40.20 和 0.266~6.927 g/kg; 相对标准偏差 (*RSD*, *n*=7~9)分别为 0.44%~1.52%、0.58%~1.06% 和 0.61%~1.98%。

No.	元素	测得值/(g/kg)	平均值/(g/kg)	RSD%
	Pt	4.494, 4.510, 4.462, 4.482, 4.443, 4.538, 4.434	4.480	0.77
HF-19	Pd	28.22, 28.14, 27.82, 28.22, 27.79, 28.25, 27.97	28.06	0.65
	Rh	3.419, 3.396, 3.361, 3.375, 3.360, 3.420, 3.370	3.386	0.71
	Pt	4.329, 4.379, 4.292, 4.343, 4.346, 4.297, 4.360, 4.368, 4.292	4.334	0.77
HF-21	Pd	13.37, 13.46, 13.24, 13.48, 13.26, 13.38, 13.61, 13.49, 13.28	13.39	0.90
	Rh	0.647, 0.656, 0.668, 0.653, 0.634, 0.656, 0.654, 0.652, 0.661	0.653	1.44
	Pt	3.771, 3.830, 3.864, 3.808, 3.864, 3.752, 3.798, 3.821, 3.816	3.814	0.98
HF-23	Pd	38.51, 39.23, 38.86, 39.28, 39.31, 38.71, 38.86, 38.49, 39.07	38.92	0.82
	Rh	6.911, 6.990, 6.979, 6.970, 6.891, 6.940, 6.879, 6.852, 6.933	6.927	0.69
	Pt	4.002, 4.012, 4.040, 4.022, 4.014, 3.949, 3.962, 3.970, 3.952	3.991	0.84
HF-30	Pd	39.79, 40.36, 40.21, 40.50, 40.03, 40.30, 39.93, 40.39, 40.30	40.20	0.58
	Rh	2.866, 2.865, 2.872, 2.860, 2.873, 2.835, 2.814, 2.862, 2.868	2.857	0.69
	Pt	5.970, 6.049, 6.013, 6.012, 5.998, 6.038, 5.980	6.009	0.44
HF-31	Pd	19.41, 19.96, 19.59, 19.62, 19.81, 19.56, 19.77	19.67	0.86
	Rh	2.303, 2.303, 2.324, 2.328, 2.318, 2.336, 2.295	2.315	0.61
	Pt	1.117, 1.138, 1.142, 1.154, 1.126, 1.116, 1.136	1.133	1.13
HF-33	Pd	6.418, 6.557, 6.456, 6.512, 6.477, 6.423, 6.586	6.490	0.92
	Rh	0.672, 0.679, 0.658, 0.668, 0.681, 0.662, 0.676	0.671	1.19
	Pt	7.166, 7.237, 7.218, 7.181, 7.226, 7.173, 7.146, 7.098, 7.174	7.180	0.60
HF-36	Pd	27.91, 28.12, 28.37, 28.17, 28.22, 27.86, 28.04, 27.96, 28.15	28.09	0.58
	Rh	3.385, 3.427, 3.364, 3.367, 3.418, 3.353, 3.345, 3.352, 3.412	3.380	0.93
	Pt	0.521, 0.520, 0.538, 0.536, 0.526, 0.518, 0.527	0.525	1.52
HF-38	Pd	2.466, 2.457, 2.456, 2.412, 2.477, 2.486, 2.419	2.453	1.06
	Rh	0.265, 0.264, 0.268, 0.258, 0.270, 0.276, 0.261	0.266	1.98

2.7 方法准确度

选取铂、钯和铑含量较低的 HF-21 样品,称取 3 份,每份 0.250 g,分别加入铂 500、1000、2000 µg, 钯 2000、5000、10000 µg,铑 100、200、300 µg, 按实验方法处理和测定。

选取铂、钯和铑含量较高的 HF-23 样品,称取

3 份,每份 0.250 g,分别加入铂 500、1000、1500 μg, 钯 5000、10000、15000 μg,铑 500、1000、1500 μg, 按实验方法处理,稀释 2 倍再测定,结果列于表 7。 由表 7 可知,加标回收率分别为铂 99.4%~101%、 钯 99.1%~100.5%、铑 98.3%~101%。

表7样品加标回收率

Tab.7 Recoveries from the sample standard addition

元素	HF-21				HF-23					
	本底值/µg	加入标 准值/µg	测得值/μg	测得标 准值/μg	回收率/%	本底值/µg	加入标 准值/µg	测得值/μg	测得标 准值/μg	回收率/%
Pt	1084	500	1589	505	101.0	953.5	500	1452	498.5	99.7
Pd	3348	2000	53366	1988	99.4	9730	5000	14685	4955	99.1
Rh	163	100	262	99	99.0	1732	500	2231	499	99.8
Pt	1084	1000	2092	1008	100.8	953.5	1000	1955	1001.5	100.2
Pd	3348	5000	8352	5004	100.1	9730	10000	19712	9982	99.8
Rh	163	200	365	202	101.0	1732	1000	2718	986	98.6
Pt	1084	2000	3075	1991	99.6	953.5	1500	2445	1491.5	99.4
Pd	3348	10000	13328	9980	99.8	9730	15000	24802	15072	100.5
Rh	163	300	458	295	98.3	1732	1500	3208	1476	98.4

3 结论

 1) 等离子熔炼所得 Fe-PGM 合金样品可用碱 熔法溶解。称取 0.25 g 样品,以过氧化钠为熔剂, 730℃保温 25 min 后,用稀盐酸即可完全浸出。

2) 碲共沉淀法可以有效富集铂、钯和铑,得 到适于 ICP-AES 测定的试液。浸出液在 4 mol/L 盐 酸介质中,加入 20 mL 碲溶液,加热至微沸,加 8 mL 二氯化锡溶液,保持微沸 30 min,铂、钯和铑沉淀 充分。

3) 在选定条件下,采用 ICP-AES 测定具有较好的精密度和回收率。对铂、钯和铑含量分别为0.5~7.0、2.0~40.2 和 0.2~7.0 g/kg 的样品,相对标准偏差分别为0.44%~1.52%、0.58%~1.06%和0.61%~1.98%,加标回收率分别为99.4%~101%、99.1%~100.5%和98.3%~101%。满足 Fe-PGM 合金生产回收的测定要求。

参考文献:

- [1] 贺小塘,李勇,吴喜龙,等. 等离子熔炼技术富集铂族 金属工艺初探[J]. 贵金属, 2016, 37(1): 1-5.
 HE X T, LI Y, WU X L, et al. Study on the process of enrichment platinum group metals by plasma melting technology[J]. Precious metals, 2016, 37(1): 1-5.
- [2] 董守安. 现代贵金属分析[M]. 北京: 化学工业出版社,
 2007: 10-11.
 DONG S A. Modern analysis of precious metals[M].

Beijing: Chemical Industry Press, 2007: 10-11.

[3] 谭文进, 贺小塘, 肖雄, 等. ICP-AES 法测定废催化剂

不溶渣中的铂、钯和铑[J]. 贵金属, 2015, 36(3): 72-77. TAN W J, HE X T, XIAO X, et al.Rapid determination of platinum, palladium and rhodium contents in insoluble slag of fine chemical industry spent catalysts by ICP-AES [J]. Precious metals, 2015, 36(3): 72-77.

- [4] 何一芳,张学彬.共沉淀分离富集-ICP-AES 法测定铜 灰渣中金、铂、钯[J]. 贵金属, 2014, 35(2): 59-63.
 HE Y F, ZHANG X B. Determination of gold, platinum, palladium in copper slag by ICP-AES with coprecipitation separation and enrichment[J]. Precious metals, 2014, 35(2): 59-63.
- [5] 刘伟,刘文,吴喜龙,等. 电感耦合等离子体原子发射 光谱法(ICP-AES)快速测定砂铂矿中的铂、铱、钌、铑、 钯和金含量[J]. 中国无机分析化学, 2013, 10(S1): 7-9.
 LIU W, LIU W, WU X L, et al. Determination of platinum, iridium, ruthenium, rhodium, palladium and gold contents in platinum placer by ICP-AES[J]. Chinese jorunal of inorganic analytical chemistry, 2013, 10(S1): 7-9.
- [6] 孙国雄,严瑾,杨琳,等.碱熔-电感耦合等离子体原子发射光谱法测定汽车陶瓷载体催化器中的铂、钯和 铑[C]//中国机械工程学会理化检验分会.全国化学与光谱分析会议论文集.太原:全国化学与光谱分析会议,2014.

SUN G X, YAN J, YANG L, et al. Determination of platinum, palladium and rhodium contents in ceramic carrier catalyst by ICP-AES with alkali fusion[C]// PTCAI, CMES. Symposium on Chinese Conference on Chemical and Spectral Analysis. Taiyuan: CCCSA, 2014.

[7] 管有祥, 王应进, 吴晓峰, 等. 汽车尾气净化催化剂中

GUAN Y X, WANG Y J, WU X F, et al. Analysis of platinum, palladium and rhodium in auto-catalysts simultaneous enrichment by fire assay-ICP measurement [J]. Precious metals, 2010, 31(S1): 196-201.

[8] 方卫,胡洁,赵云昆,等. ICP-AES 测定汽车催化剂中 Pt、Rd、Rh 的干扰研究[J].分析试验室,2009,28(5): 86-90.

FANG W, HU J, ZHAO Y K, et al. Study on effect of interference on determination of Pt, Pd, Rh in automobile catalysts by ICP-AES[J]. Chinese journal of analysis laboratory. 2009, 28(5): 86-90

- [9] DYACHKOVA A V, MALUTINA T M, ALEKSEEVA T Y, et al. Chemical preparation of samples of dead automobile catalyzers for subsequent determination of platinum, palladium, and rhodium using atomic emission spectrometry with inductively coupled plasma[J]. Inorganic materials, 2012, 48(14): 1272-1278.
- [10] 黎林, 雷双双, 陈云霞. 微波消解-电感耦合等离子体 原子发射光谱法测定车用催化剂中贵金属[J]. 冶金分 析, 2012, 32(9): 51-54.
 LI L, LEI S S, CHEN Y X. Microwave digestion-

inductively coupled plasma atomic emission spectrometry for determination of precious metal in vehicle-used catalytic converters[J]. Metallurgical analysis, 2012, 32(9): 51-54.

- [11] 中国汽车技术研究中心. 金属催化转化器中铂、钯、铑 含量的测定方法: QC/T 968-2014[S]. 北京: 中华人民 共和国工业和信息化部, 2014.
 China Automotive Technology Research Center.
 Determination methods of platinum, palladium and rhodium contents in metallic catalytic converters: QC/T 968-2014[S]. Beijing: Ministry of Industry and Information Technology, 2014.
- [12] 刘伟,李勇,刘文,等.等离子熔炼富集物 Fe-PGM 合金的取样方法研究[J].贵金属,2016,37(2):57-60.
 LIU W, LI Y, LIU W, et al. Study on sample preparation and sampling method for analysis of plasma melting Fe-PGM alloy[J]. Precious metals, 2016, 37(2): 57-60.
- [13] 马媛. 铂族金属分离富集及测定技术研究[D]. 昆明: 云南大学, 2009.

MA Y. Study on separation and enrichment of platinum group metals and its determination[D]. Kunming: Yunnan University, 2009.

【上接第 71 页】

[4] 朱学纯, 尹晓辉, 韦志宏, 等. 含 31 个元素铝基光谱标 准样品的制备及定值结果[J]. 铝加工, 2009, 186(1):
4-9.
ZHU X C, YIN X H, WEI Z H, et al. Preparation and

certification result of spectrum standard samples containing 31 elements [J]. Aluminum processing, 2009, 186(1): 4-9.

[5] 朱利亚,杨光宇,李楷中,等. 微波密闭消解技术在处
理 Rh、Ir 粉及其试样中的应用[J]. 贵金属, 2008, 29(1):
40-52.

ZHU L Y, YANG G Y, LI K Z, et al. Application of microwave closed digestion technique in the treatment of

difficultly dissolveg Rh, Ir powders and their samples[J]. Precious metals, 2008, 29(1): 40-52.

[6] 李光俐, 徐光, 何娇, 等. 多元光谱拟合 ICP-AES 法同时测定钯中 22 个杂质元素[J]. 贵金属, 2012, 33(2): 52-58.

LI G L, XU G, HE J. et al. MSF for determination of 22 impurities in palladium by ICP-AES[J]. Precious metals, 2012, 33(2): 52-58.

[7] 董守安. 现代贵金属分析[M]. 北京: 化学工业出版社, 2007: 41-51.

DONG S A. Modern analysis of precious metals[M]. Beijing: Chemical industry press, 2007: 41-51.