密闭消解-ICP-AES 测定卡斯特催化剂中的铂

马 媛,杨晓滔,余 尧,韩艳波,方 卫,李楷中^{*} (贵研铂业股份有限公司,贵研检测科技(云南)有限公司,昆明 650106)

摘 要:由于含有碳和硅的有机物,卡斯特催化剂样品消解困难。采用密闭消解法,以盐酸-硝酸-氢氟酸混合酸为消解剂,在150℃加热7h,可以去除样品中的碳和硅。所得试液中的其他杂质元素 不产生干扰,可用 ICP-AES 直接测定铂量。结果表明,测定铂含量为500~20000 µg/g 的卡斯特催化 剂样品,相对标准偏差(RSD)<2%,加标回收率为96.3%~103.6%,测定结果与实际样品名义值相符, 可满足生产分析要求。

关键词: 分析化学; 密闭消解; 电感耦合等离子体发射光谱法(ICP-AES); 卡斯特催化剂; 铂中图分类号: O657.4, O652.4 文献标识码: A 文章编号: 1004-0676(2018)01-0060-04

Determination of Platinum in Karstedt's Catalyst by ICP-AES with Sealed-digestion

MA Yuan, YANG Xiaotao, YU Yao, HAN Yanbo, FANG Wei, LI Kaizhong^{*}

(Sino-Platinum Metals Co. Ltd., Sino-Platinum Metals Testing Technology (Yunnan) Co. Ltd., Kunming 650106, China)

Abstract: The Karstedt's catalyst was difficult to be dissolved because of the organic compounds containing carbon and silicon. By using sealed digestion technique in the mixture of hydrochloride acid - nitric acid - hydrofluoric acid at 150°C for 7 hours, the sample was dissolved, and the carbon and silicon was removed. The concentration of platinum in the solution was detected by inductively coupled plasma atomic emission spectrometry (ICP-AES), and the results were not disturbed by the impurities. For Karstedt's catalysts with platinum concentration range of 500~20000 μ g/g, the relative standard deviation (*RSD*) was less than 2%, and the recovery was 96.3%~103.6%. The results of determination were in agreement with the nominal values, meeting the requirements for analysis in production.

Key words: analytical chemiatry; sealed digestion; ICP-AES ; Karstedt's catalyst; platinum

卡斯特催化剂(Karstedt's catalyst)是一种以有机 硅作为稀释剂的均相催化剂,其活性成分为 1,3-二 乙烯基-1,1,3,3-四甲基二硅氧烷铂(0)(化学式为 C₈H₁₈OPtSi₂)。卡斯特催化剂又称为铂金催化剂或铂 金水,其外观为无色透明或淡黄色液体,可用于聚 氨酯涂料和有机硅硅胶涂料的同时催化固化,还可 以作为液体加成硅橡胶等的催化剂,用作液体胶硫 化剂、有机硅制品阻燃剂等,具有极高的催化活性 及使用稳定性。

卡斯特催化剂根据用途的不同,有多种不同铂

含量的产品,其中铂含量的确定是供需双方的主要 定价依据。铂的测定需要将有机铂化合物转化为铂 的无机络离子。对含铂样品消解方法一般有酸消解 法、碱熔融法及火试金富集法3大类^[1-3]。其中碱熔 融法引入大量盐,对后续仪器测定还需增加分离富 集的步骤。火试金富集法的处理流程较长,样品消 耗量大,适宜处理含铂量高的样品^[4]。由于卡斯特 催化剂中铂含量范围宽(ω(Pt) =x00~x0000 μg/g),不 仅含硅,还含有大量有机物,采用常规的消解处理 方法流程长,需要反复加氢氟酸除硅,加高氯酸发

收稿日期: 2017-11-06

第一作者:马 媛,女,高级工程师,研究方向:贵金属分析化学。E-mail: mayuan@ipm.com.cn

^{*}通讯作者:李楷中,男,高级工程师,研究方向:贵金属分析化学。E-mail:likzh@ipm.com.cn

烟破坏有机物,对环境及操作实验人员伤害大,且 在敞开式消解过程中,部分待测元素易溢出损失, 从而使铂的测定值偏低。

铂的测定方法有紫外-可见分光光度法(UV-Vis)^[5-8]、火焰原子吸收光谱法(FAAS)^[9]和电感耦合 等离子体发射光谱法(ICP-AES)^[10-11]等。UV-Vis 法 仪器成本较低,但是显色反应的前处理过程相对麻 烦,且对价态有要求,处理大批量样品效率不高。 FAAS 仪器普及率高,但对铂的测定灵敏度低。 ICP-AES 具有检出限低、精度高、线性范围宽、速 度快等优点,适用于产品分析。

本文采用聚四氟乙烯压力罐密闭消解,在消解 体系中加入少量氢氟酸,破坏有机物的同时去除样 品中的硅。用 ICP-AES 测定所得消解液中的铂量。

1 实验部分

1.1 仪器和主要工作条件

电感耦合等离子体原子发射光谱仪(美国 PE 公司 5300DV 型 ICP-AES)。仪器工作条件与文献[12] 相同,选定铂分析线 299.797 nm 进行测定,自动积 分时间 1~10 s,重复测定 3 次。

1.2 试剂和样品

铂标准储备溶液(国家钢铁材料测试中心): 1000 μg/mL; 氩气(纯度不小于 99.99%); 氢氟酸、 盐酸、硝酸、过氧化氢均为分析纯。实验用水为一 次蒸馏水。实验用样品为贵研铂业股份有限公司提 供的卡斯特催化剂产品。

1.3 实验方法

称取 0.1~0.2 g 卡斯特催化剂样品于石英舟中, 再置于 30 mL 聚四氟乙烯密闭消解罐中,加入 15

表1 样品消解方法对比

Tab.1 Contrast test for digestion methods

mL 盐酸、5 mL 硝酸、1.0 mL 氢氟酸。拧紧罐盖, 放入 150℃(±5℃)的烘箱中溶解 7 h 以上。取出,将 罐冷却至室温后,拧开罐盖,将溶液转入 200 mL 烧杯中,再加入 0.2~0.5 mL HF,置于低温电热板上 加热 30 min 至溶液清亮。取下,冷却至室温,将溶 液转入 100 mL 容量瓶中,用水定容。混匀,得到 待测试液。

1.4 标准溶液系列的配制

铂标准溶液:移取 10.00 mL 铂标准储备溶液于 100 mL 容量瓶中,加入 10 mL 盐酸,用水稀释至 刻度。混匀。此溶液 1 mL 含 100 μg 铂。

采用逐级稀释的方法得到 0.00、1.00、5.00、 10.00、20.00、50.00 μg/mL 系列标准工作溶液,均 为 10%盐酸介质。

2 结果与讨论

2.1 样品分解方法

处理卡斯特催化剂的难点在于保证在破坏有机物的同时,分解样品中以有机硅为主体的稀释剂,并在处理过程中避免铂的损失。对比了不同溶样方式(电热板-烧杯、密闭消解)、不同溶样体系条件下的溶样效果,结果如表1所列。

由表1可见,采用烧杯溶样时,有机物破坏不 完全,硅去除不完全,测定值偏低。采用烘箱-消解 罐密闭消解溶样时,有机物破坏完全。在选用的几 种体系中,除了考虑硅的特定去除试剂氢氟酸外, 仅有盐酸或硝酸的体系是不能完全溶解铂的,还是 需要盐酸-硝酸混合酸体系。表1中,盐酸-硝酸-氢 氟酸体系能够较好去除有机硅和溶解铂,少量的硅 胶可在后续烧杯加热处理中以氢氟酸去除。最终选

Na	巡艇士社	消解体系	消解	计应证色	测定值	
INO.	们用户力石	消解剂	体积/mL	时间/h	山 迎北家	$\omega(\text{Pt})/(\mu g/g)$
1	电热板(烧杯,敞开)	HNO ₃ +HF+HClO ₄ +HCl	10+1.0+0.5+10	3	有机物溢出	514
2	电热板(烧杯,表皿)	HNO3+HF+HClO4+HCl	10+1.0+0.5+10	3	有机物溢出	507
3	烘箱-密闭消解(150℃)	HCl+HF	10+1.0	8	大量硅胶挂壁	466
4	烘箱-密闭消解(150℃)	HCl+H ₂ O ₂ +HF	10+2.0+1.0	8	大量硅胶挂壁	530
5	烘箱-密闭消解(150℃)	HNO ₃ +HF	10+1.0	8	大量硅胶挂壁	532
6	烘箱-密闭消解(150℃)	HCl+HNO ₃ +HF	15.0+5.0+1.0	7	极少量硅胶	550
7	烘箱-密闭消解(150℃)	HCl+HNO ₃ +HF	15.0+5.0+1.0	8	极少量硅胶	548
8	烘箱-密闭消解(150℃)	HCl+HNO ₃ +HF	15.0+5.0+1.0	9	极少量硅胶	551

用 15.0 mL 盐酸、5.0 mL 硝酸和 1.0 mL 氢氟酸作为 消解介质,在密闭体系中于 150℃(±5℃)消解 7 h 就 可将有机铂化合物转化为无机铂化合物,得到可直 接进行 ICP-AES 的待测试液。

2.2 ICP-AES 测定条件

2.2.1 共存元素的影响

卡斯特催化剂是用纯金属铂制备而成,除硅外, 合格产品中的金属杂质元素为微量或痕量级。在使 用过的卡斯特催化剂会引入少量钙、镁、铝、铁、 铅、铜、钠等杂质元素。

在铂标准溶液中,分别加入不同含量共存元素 考察其对铂测定的干扰情况。结果表明,试液中 50 倍量的钙、镁、铝、铁、铅、铜、钠等共存元素, 对铂的测定无影响。

2.2.2 酸度的影响

考察了消解样品时所使用到的氢氟酸、盐酸和 硝酸介质对测定的影响。结果表明不同的介质对测 定结果无明显影响。但随着酸度的增加,谱线强度 降低^[12]。为减小酸度对谱线强度的影响,标准溶液 与试液的酸介质浓度要尽量匹配。

2.2.3 校准曲线

按照设定的仪器工作条件测定标准溶液系列, 绘制校准曲线。铂的质量浓度在 0.50~50.00 mg/L 范围内与其发射强度呈线性,相关系数 r>0.9999。

表3 样品加标回收率

Tab.3 Recoveries of samples with standard addition

2.3 精密度试验

测定了3种不同含量卡斯特催化剂样品中铂的 含量,结果列于表2。

表 2 精密度试验结果(n=5)

Tab.2 Experiment results for precision test (n=5)

No.	测定值 ω(Pt)/(μg/g)	平均值 	RSD /%
Pt-500	530, 541, 533, 541, 555	540	1.80
Pt-5000	4935, 4996, 5014, 4986, 4940	4974	0.70
Pt-2%	20830, 20522, 20786, 20884, 20582	20721	0.77

由表 2 结果可见, 测定低含量样品(Pt-500)时的 相对标准偏差(*RSD*)<2%, 测定较高含量的样品 (Pt-5000、Pt-2%)时 *RSD*<1%,表明方法具有较好的 精密度。

2.4 加标回收试验

称取多个不同的卡斯特催化剂样品,分别加入 1~3 倍量的铂标准溶液,按实验方法进行消解、测 定,考察方法的加标回收率,结果列于表 3。由表 3 可见,测定含铂量为 500~20000 μg/g 的样品,加标 回收率为 96.3%~103.6%。表明方法具有较好的测定 准确度。根据表 2 的结果,样品测定值与名义值相 符,表明方法可满足实际样品测定的要求。

Tab.5 Recoveres of samples with standard addition										
Pt-	500		Pt-5000			Pt-2%				
加入值	测定值	回收率	本底值	加入值	测定值	回收率	本底值	加入值	测定值	回收率
/µg	/µg	/%	/µg	/µg	/µg	/%	/µg	/µg	/µg	/%
200	370	97.5	1066	1000	2052	98.60	1414	1502	2861	96.3
200	368	97.0	1122	2003	3164	101.95	1909	1502	3415	100.3
300	469	99.7	1074	3004	4083	100.17	1397	3004	4362	98.7
300	466	98.3	—	—	—		1792	3004	4903	103.6
500	665	99.0	—	—	—		1479	3505	4950	99.0
500	682	100.8	_	_	—	—	1492	3505	4930	98.1
	Pt- 加入值 /μg 200 200 300 300 500	Pt-500 加入值 测定值 /µg /µg 200 370 200 368 300 469 300 466 500 665 500 682	Pt-500 加入值< 测定值 回收率 /μg /μg /% 200 370 97.5 200 368 97.0 300 469 99.7 300 466 98.3 500 665 99.0 500 682 100.8	Pt-500 本底值 加入值 测定值 回收率 本底值 /µg /µg /% /µg 200 370 97.5 1066 200 368 97.0 1122 300 469 99.7 1074 300 466 98.3 — 500 665 99.0 — 500 682 100.8 —	Pt-500 Pt-5 加入值 测定值 回收率 本底值 加入值 /µg /µg /% /µg /µg 200 370 97.5 1066 1000 200 368 97.0 1122 2003 300 469 99.7 1074 3004 300 466 98.3 — — 500 665 99.0 — — 500 682 100.8 — —	Pt-500 Pt-5000 加入值<测定值	Pt-500 Pt-5000 加入值 测定值 回收率 本底值 加入值 测定值 回收率 /µg /µg /µg /½ /µg /µg /µg /µg /½ 200 370 97.5 1066 1000 2052 98.60 200 368 97.0 1122 2003 3164 101.95 300 469 99.7 1074 3004 4083 100.17 300 665 99.0 — — — — 500 682 100.8 — — — —	Pt-500 Pt-5000 加入值< 测定值 回收率 本底值 加入值 测定值 回收率 本底值 /µg /µg /µg /µg /µg /µg /µg /µg /µg 200 370 97.5 1066 1000 2052 98.60 1414 200 368 97.0 1122 2003 3164 101.95 1909 300 469 99.7 1074 3004 4083 100.17 1397 300 466 98.3 - - - 1792 500 665 99.0 - - - 1479 500 682 100.8 - - - 1492	Pt-500 Pt-5000 Pt- 本底值 Pt- 加入值 测定值 回收率 本底值 加入值 测定值 回收率 本底值 加入值 测定值 回收率 本底值 加入值 测定值 回收率 本底值 加入值 Pt- /µg /	Pt-500 Pt-2% 加入值< 测定值 回收率 本底值 加入值 测定值 /µg /

3 结论

 1) 采用密闭消解的方式,以15 mL 盐酸、5 mL 硝酸和1.0 mL 氢氟酸为介质,在150℃烘箱中保温
 7 h 可溶解去除卡斯特催化剂样品中的有机物和有 机硅,后续简单处理后即可得到满足 ICP-AES 测定

铂的试液。

2) 采用本法测定铂含量为 500 μg/g 的卡斯特 催化剂样品,方法相对标准偏差(*RSD*)<2%,对铂含 量 5000~20000 μg/g 的样品,*RSD*<1%。样品加标回 收率为 96.3%~103.6%。实际样品测定结果与名义值 相符,表明本法可满足生产测定需求。

参考文献:

 董守安. 现代贵金属分析[M]. 北京: 化学工业出版社, 2007.

DONG S A. Modern analysis of precious metals[M]. Beijing: Chemical Industry Press, 2007.

[2] 吕素芳, 倪勇, 傅水玉. 微波消解-火焰原子吸收法测 定硅橡胶催化剂中铂的含量[J]. 有机硅材料, 2010, 24(1): 45-49.

LÜ S F, NI Y, FU S Y. Determination of platinum catalyst content in silicone rubber catalyzer by FAAS with microwave digestion[J]. Silicon material, 2010, 24(1): 45-49.

- [3] 谢芳琴, 董占能, 吴立生, 等. 从合成有机硅废催化剂 中回收铂[J]. 有机硅材料, 2009, 23(2): 107-110.
 XIE F Q, DONG Z N, WU L S, et al. Recycling of platinum in waste catalyst in organic silicon synthesis[J].
 Silicon material, 2009, 23(2): 107-110.
- [4] 李小玲,肖红新,王芳. 铅试金法测定硅氧烷铂配合物中的铂[J]. 贵金属, 2017, 38(4): 66-68.
 LI X L. XIAO H X, WANG F. Determination of platinum content in platinum-siloxane complex by lead fire assay[J]. Precious metals, 2017, 38(4): 66-68.
- [5] 全国有色金属标准化技术委员会. 贵金属催化剂化学 分析方法 汽车尾气净化催化剂中铂、钯、铑量的测定 分光光度法: GB/T 23277-2009[S]. 北京: 中国标准出 版社, 2009.

TC243. Chemical analysis methods of catalysts containing precious metals - Determination of platinum, palladium and rhodium in automobile exhaust-purifying catalysts - Spectrophotometry: GB/T 23277-2009[S]. Beijing: Standards Press of China, 2009.

[6] 谢芳琴,董占能,吴立生,等.有机硅偶联剂合成中废 催化剂中铂含量的测定[J].有色金属,2010,62(4):
133-135.

XIE F Q, DONG Z N, WU L S, et al. Determination of platinum content in spent catalyst in organic silicon couplet synthetic[J]. Nonferrous metals, 2010, 62(4):

133-135.

[7] 谢芳琴,董占能,吴立生,等.分析硅偶联剂合成产生
 的废催化剂中铂的样品预处理研究[J].冶金分析,2009,
 29(5):69-72.

XIE F Q, DONG Z N, WU L S, et al. Study on the sample pretreatment for analyzing platinum in wast catalyst generated during silicon coupling agent synthesis[J]. Metallurgical analasis, 2009, 29(5): 69-72.

[8] 谢芳琴,董占能,吴立生.有机硅合成废催化剂中铂分析的制样研究[J].武汉理工大学学报,2009,31(13):
 49-51.

XIE F Q, DONG Z N, WU L S. Research on sample preparation of platinum analysis in spent catalyst in organic silicon synthesis[J]. Journal of Wuhang University of Technology, 2009, 31(13): 49-51.

- [9] SCACCIA S, GOSZCZYNSKA B. Sequential determination of platinum, ruthenium, and molybdenum in carbon-supported Pt, PtRu, and PtMo catalysts by atomic absorption spectrometry[J]. Talanta, 2004, 63(3): 791-796.
- [10] 蒙塔塞, 戈莱特利. 感耦等离子体在原子光谱分析中的应用[M]. 陈隆懋, 邵友彬, 梁造, 等译. 北京: 人民卫生出版社, 1992.
 MONTASER A, GOLIGHTIY D W. Inductively coupled plasma in atomic analytical spectrometry[M]. trans by CHEN L M, SHAO Y B, LIANG Z, et al. Beijing: People's Medical Publishing House, 1992.
- [11] 刘英, 臧慕文. ICP-AES 测定废 Al₂O₃ 基催化剂中 Pt、 Pd[J]. 分析试验室, 2002, 21(6): 40-43.
 LIU Y, ZHANG M W. Determination of Pt and Pd spent Al₂O₃ catalyst by ICP-AES[J]. Chinese journal of analysis laboratory, 2002, 21(6): 40-43.
- [12] 马媛,李青,杨晓滔,等. 电感耦合等离子体原子发射 光谱法测定钯炭中钯[J]. 冶金分析, 2016, 36(8): 69-72.
 MA Y, LI Q, YANG X T, et al. Determination of palladium in palladium-carbon by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical analysis, 2016, 36(8): 69-72.