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The Foundation and Study of
the Lattice Inversion Potential for Platinum
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Abstract: The lattice cohesive curve of Platinum was investigated through first-principles calculations.
The double-exponential function to fit the curve was presented. The inversion pair potential curve was
generated through Chen’s inversion method. The accurate pair potential function was obtained through
fitting by the new double-exponential function. The phonon spectra were calculated through using the
inversion potential data, the EAM (embedded atom method) potential theory and first principle method
respectively to verify the reliability of the inversion potential. The method combining Boltzmann statistics
equation with accuracy fitting of lattice cohesive energy curve was proposed to calculate the thermal
expansion coefficient. In addition, the bulk modulus and Griineisen constant in the room temperature were
calculated. The results were in good agreement with experiment results, which implied that the inversion
potential was effective and accurate.
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The potential is the basis of the simulation dynamics method, directly determines the accuracy
calculation of condensed matter at atomic scale. The and reliability of the simulation calculation

potential function, as foundation of molecular consequence. Chen’s lattice inversion method has
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been in common use to achieve the pair potentials
based on the first-principles calculations, including the
fields earth
compounds, metal-ceramic interfaces, ionic crystals
101 Chen’s lattice

about rare transition intermetallic

and semiconductors! inversion
theory is based on the Mobius transformation in
number theory, through strict mathematical proof
without any experiential factors. It can obtain the
interaction between the central atom and the nearest
atom, so that the exact interatomic potential can be
obtained. Empirical many-body potential models
should be
determined by fitting to the experimental data of the

include adjustable parameters which

involved systems, for example, the EAM potential.
Considering the experimental data should be obtained
in different physical conditions, the general
applicability of empirical many-body potential is not
good[9'“].

In this paper, using the first principles method

8-10
], the accurate

and Chen’s lattice inversion theory!
curve of inversion potential of Platinum is constructed.
The phonon spectra are calculated through using the
inversion potential data. The thermal expansion
coefficient of Platinum is calculated, which can

provide reference for the study of Platinum.

1 Computational details

1.1 The construction of inversion lattice potential
Based on the Chen’s inversion theory™®'?, the
lattice cohesive curve of Platinum is investigated, and

8101 6 fit the curve is

the double-exponential function'
presented. This can be summed up as a conversion

between the following two functions,
E(x)= %Zr(n)(p(b(n)x) M
n=l1

where E(x) is the cohesive energy of atom, x is the
nearest atom distance, 7(n) is the coordination number
of the nth nearest atom, and b(n) is the relative
distance of the nth nearest atom.

And then the pair potential between different
atoms is written as

P(x) = 25: I(n)E(b(n)x) (2)

n=1

where is inversion coefficient , and can be written as

af b(m) 1) _ 3
> I(n)r[b [b(n)D_5ml 3)

b(n)b(m)

{b(m);

semi-group. Using computer programming makes (1),

Assemblage satisfying ~ multiplicative
b(2),...,b(n) =from small to large in, and makes
b(1)=1, b'[b(m)/b(n)], which is a mathematical
operation, has indicate that the value is & by the
operation when the value of b(m)/b(n) belongs to the
assemblage {b(m)} and equal to b(k). Based on the
local-density approximation (LDA), the isolated
atomic of Platinum ground state energy is obtained
through using CASTEP in the Material Studio. The
Brillouin-zone is sampled by a 16x16x16 k-point mesh.
The cutoff energy is set to 340 eV. The SCF tolerance
is set as 1x10” eV/atom. The spin polarization is not

B The calculated ground state energy

considered !
curve is shown in Fig. 1. The curve is fitted by the
following function,

@(r)=E, + Dexp[-(r—R,)/ €] (4)
Where E, is the ground state energy of isolated atom
and E,"'=-713.60752 eV.
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Fig.1 The isolated atomic ground state
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The lattice cohesive energy in different atomic
distances are calculated with distance ranging from 0.2
nm to 1.2 nm, the step length from 0.01 nm to 0.05 nm
and a total of 40 grid points. The curve, as shown in
Fig.2, is achieved after the value of single atom
cohesive energy subtracting the isolated atom ground
state energy.
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Fig.2 The lattice cohesive energy curve of Pt
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According to the above calculation results, the

lattice inversion potential curve, which atomic
distance from 0.2 nm to 1.2 nm, step length is 0.01 nm
and a total of 100 grid points, is obtained by using a

self-compiled calculation program, as shown in Fig.3.
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Fig.3 The lattice inversion potential curve of Pt
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1.2 The fitting of inversion potential function

The exact fitting function, especially the overall
consistent function, is the basis for the next precise
calculation. The curve shown in Fig.3 is fitted by
Origin software, and the quality of the fitting is
evaluated by the correlation coefficient given by the
software. The correlation coefficient change from 0 to
1, if the value is close to 1, meant that the fitting
performance is excellent and the fitting function is
accurate. Different potential functions, such as Rose
function, Morse function and the new double-
exponential potential function proposed in the work

are used to fit the lattice inversion potential, and to

compare and analyze the fitting results.
1.2.1 The fitting of Rose function and Morse function
The Rose function is used to fitting the pair
potentials'®, the form is:
o(r)==D[l+a(r=R)]expl-a(-&)] (5)
Where D, Ry and o represent parameters generated
from fitting processing, ¢(r) represents the inversion
potential energy, r represents the distance between
atoms. The obtained correlation coefficient is 0.99879.
The fitting curve matches the points chain very well in
the short distance.
Morse function has been in common use to
achieve the pair potentials of fcc metal, the form is
¢(r) = Dlexp(~2a(r = R, )~ 2exp(-a(r - &) ))] (6)
The parameters are listed in Tab.1.

Tab.1 Fitting parameters in Morse potential function

® 1 WMERBNERTHSH
D/eV

0.79636

Element

Pt

o/(1/nm)
0.153226

Ry/nm

0.29747

The value of correlation coefficient is 0.99911.
Comparing the calculation results with the existing
data by Flahive P G!'"! is meaningful. The parameters
of Morse function is given in Table 2.

Tab.2 Parameters of Morse potential
®2 BEIRIA S

D/eV
0.7102

Element

Pt

o/(1/nm)
0.16047

Ry/nm

0.2897

The value of Ry and a are basically accorded,
while the value of D has larger difference. The main
reason is the temperature chosen by Table 1 is 0 K,
while Table 2 is calculated under gas state. The value
of Ry is determined by the nearest atom distance at
equilibrium state, and the value of a is determined by
the second derivative of potential function. Although
lattice constant will change with the action of atomic
vibrations as temperature rose, the equilibrium
position remains unchanged. Therefore, both of them
are unrelated to the temperature chosen by the
potential function. The value of D is relevant to the

temperature which relates the difference of minimum



#S1

EEREE: RIS I E ST 27

value of inversion potential. Moreover, the base state
energy is less than the isolated atomic ground state
energy at 0 K under the gas condition. Therefore, the
value of D has deviation, and Tab.2 corresponds to
smaller value. So the calculated results are precisely
accurate.
1.2.2 The fitting of double-exponential potential
function equation

The double-exponential potential function is
proposed in this work to improve the accuracy in the
fitting. The equation containing five parameters is
written as

o(r) = D, expl-a(r - R, )|~ D, expl- f(r—R,)] (7)

The value of correlation coefficient is 1,
indicating that the fitting quality is excellent. These
parameters are listed in Tab.3.

Tab.3 Fitting parameters in double exponential potential

function
3 WEBER B -ESHIE
Element D;/eV  a/(1/nm) D,/eV  p/(1/nm)  Ry/nm

Pt -1.36137 0.114834 -0.67185 0.352749 0.283581

In order to compare and analyze the effect of
three functions fitting on the pair potential curve, the
fitting results are zoomed in and analyzed, as shown in
Fig.4.

The result show that L-J potential function and
Morse function agree well with the curves in the long
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Fig.4 The comparison of the fitting results of these four

potential functions
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range and short range of the potential function curve.
The fitting effect of magnified observation curve
shows that their global fitting effect is poor, and the
accuracy is not high, although the correlation
coefficients of the L-J potential function and the
Morse potential function are higher, it meets the
requirements. This will greatly affect the accuracy of
calculation in the future -calculation. The new
double-exponential potential function performs very
well in the overall fitting. The value of correlation
coefficient is 1, indicating that the fitting quality is
excellent. It is certain to provide strong precision

support for the following calculation.

2 Application and Analysis

2.1 The calculation of phonon spectra of Platinum

To verify the reliability of the inversion potential,
the phonon spectra of Platinum is calculated through
using the module of GULP in the Material Studio. The
calculation adopt inversion potential method, Sutton-
Chen’s many-body potential of EAM potential theory
and the CASTEP module (using finite displacement
method) in the software respectively, as shown in
Fig.5.
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Fig.5 The phonon spectra of Pt
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The coordinate of these main symmetric points in
the Brillouin Zone are G (0, 0, 0), X (0.5, 0, 0.5), W
(0.5, 0.25, 0.75), K (0.75, 0.375, 0.375), L (0.5, 0.5,
0.5). The tendency of these curves is consistent, meant
inversion potential can reflect the interaction between
atoms efficiently. The EAM potential method needs 51
times more time in the computation comparing with
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inversion potential method, that the

inversion method has great advantage in the amount of

indicating

calculation. As for EAM potential function, it has a
wide choice of function forms and more empirical

8] Its equation is deduced based on the Rose

factors
potential function, which leads to the unreliable
calculation results. Yet inversion potential based on
the number theory, through strict mathematical proof,
is an overall accuracy potential. The calculation of
phonon spectra is effective and reliable.
2.2 The verification and calculation of the

potential function

Eq.(8) is used to fit the lattice cohesive energy
curve as shown in Fig. 2. Fitting parameters are shown
in Table 4. The value of correlation coefficient is
0.99996.

u(r) =Dy exp[-alr—R, )]~ D, exp[- p(r—R,)] (8)

The first derivative equals to zero of the lattice
cohesive energy with respect to the relative distance r,
which leads
equilibrium state of 0 K. The value of the nearest atom
distance of Pt is o =0.27702 nm. The lattice structure

to the nearest atom distance in

of Pt is optimized by using the inversion potential
function (GULP module), and the value of the nearest
atom distance is 7, =0.27702 nm. Compared with the
lattice constants 7o '=0.27702 nm in the experiment[m,
the cohesive energy function and the inversion
potential function are both accurate and effective
Physical quantities such as linear expansion
coefficient, bulk modulus, and Griineisen constant are
calculated. Then the calculation results are compared

with experimental data.

Tab.4 Fitting parameters of cohesive curve using double
exponential potential function

R4 FIXHEER B A 75 2 % A R BE I 2e S 50

Dy/eV  a/(l1/mm) Dy/eV  p/(1/nm)

Pt 2.13453 0.376381 9.34367 0.123552 0.291362

Element Ry/nm

2.2.1 The calculation of linear expansion coefficient
The calculation method is based on the calculated
formula of the potential function and the Boltzmann

[16

statistics equation!'®, which can calculate the atomic

average thermal vibration displacements at different

temperature, and can be written as:
5=[a" a5 [ ds ©)

where 0=r-ry, 1y represents the nearest atom distance
in equilibrium state of 0 K. Considering each atom has
a certain size, romust be a value varies from a to oo,

where a represents the ionic radius of Pt, resulting in:
S = J.w reiV(")/k‘*Tdr/J‘w e T g 7 (10)

a

The linear expansion coefficient is a one-
dimensional quantity, and V(r) is the One-dimensional
quantity of lattice cohesive energy, while u(r) is the
three-dimensional quantity of lattice cohesive energy.
So the relationship between V(r) and u(r) is

V(ry=u(r)/3 (11)

Bring Eq.(8) and the data in Table 4 into Eq.(10),
the value of volume change under the temperature
range from 273K to 7y are calculated using
self-compiled programs. The values of the coefficient
of expansion under different temperatures are obtained,
and the o-T curve is obtained, as shown in Fig.6.
Compared with the experimental data™”, it’s found
that the trends of the curves are almost identical. The
linear expansion coefficient (293K) is calculated as
o "=7.07x10°K ", Comparing with the experimental
data® o; "'=8.8x10°K™", the relative error is 19.6%.
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Fig.6 The linear expansion coefficient curves of Pt
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2.2.2 The calculation of bulk modulus
According to the calculation results in 2.2.1
section, the bulk modulus of elasticity at different

temperatures can be calculated by the cohesive energy
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function in theory. Considering the calculation results
at room temperature is more reference value, the
cohesive energy function to calculate the elastic
modulus at room temperature, and compared with the
calculated results of inversion potential (using GULP
module) and experimental data, as shown in Tab.5.

Tab.5 The bulk moduli calculation of Pt
R 5 UTEB B &

The cohesive

The bulk . Theinversion experimental
. energy function .
moduli/GPa potential(0K)  data (293K)
(293K)
Kpy 308.60 316.31 276

Compare with experimental data, the relative
error is 11.8%, meant the calculation method is
accurate and effective.

2.2.3 The calculation of Griineisen constant

According to Griineisen equation,

y=xa,V/C, (12)
where x represents bulk modulus, ay represents
volumetric expansion coefficient, the relationship
between ay and ap is ay=3ar, y represents Griineisen
constant, Cy represents the specific heat at constant
volume.

The value ofx and &, calculated above, and

equation V=N, (ﬁro)s/4, where N, represents the
Avogadro's number and r( represents nearest atomic
distance in Equilibrium state, the value of Griineisen
constant y at 293K is achieved as yp=2.64. Whereas
the experimental data®yp=3.03, the relative error is

12%, meant the result is accurate and effective™ =),

3 Conclusion

1) The inversion pair potential curve of Platinum
is generated.

2) The accurate pair potential function is
through fitting by the

exponential function.

obtained new double-

3) The phonon spectra are calculated through
EAM
(embedded atom method) potential theory and first

using the inversion potential data, the

principle method respectively to verify the reliability

of the inversion potential.

4) The method combining Boltzmann statistics
equation with lattice cohesive energy curve is
proposed to calculate the thermal expansion
coefficient.

5) The bulk modulus and Griineisen constant in
the room temperature are calculated.

The results are in good agreement with
experiment results, which implies that the inversion

potential is effective and accurate.
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