一种联吡啶类铱配合物的合成及光物理性能测试

陈洪来,黄光英,沈峰,晏彩先*

(贵研化学材料(云南)有限公司,昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,昆明 650106)

摘 要:以2-(2,4-二氟苯基)吡啶为主配体,2,2'-联吡啶为辅助配体,设计合成出了一种联吡啶铱配 合物[Ir(dfppy)₂(bpy)]PF₆(dfppy=2-(2,4-二氟苯基)吡啶,bpy=2,2'-联吡啶)。通过元素分析、质谱、 核磁共振谱、红外光谱和X射线单晶测试表征了配合物的化学结构,通过光致发光光谱和紫外可见 光谱研究了配合物的光物理性能。结果表明,配合物的最大发射波长为515 nm,发光颜色为绿光。 关键词:离子型铱配合物;2,2'-联吡啶;发光电化学池;光物理性能;晶体 中图分类号:O627.8 文献标识码:A 文章编号:1004-0676(2023)03-0013-05

Synthesis and photophysical properties of iridium phosphorescent complex with bipyridine as auxiliary ligand

CHEN Honglai, HUANG Guangying, SHEN Feng, YAN Caixian *

(Sino-Platinum Metals Chemical (Yunnan) Co. Ltd., State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China)

Abstract: A new cationic iridium(III) complex, $[Ir(dfppy)_2(bpy)]PF_6$ (dfppy=2-(2, 4-difluorophenyl) pyridine, bpy=2,2'-bipyridine), was successfully synthesized from chloride-bridged dimer (dfppy)₄Ir₂ (μ -Cl₂) and 2,2'-bipyridine by using hexafluorophosphate as a counter anion. Its structure was characterized by elemental analysis, ¹H NMR and ¹³C NMR, MS and FT-IR. Photophysical property of this complex was investigated. The results show that the maximum emission wavelength of the complex is 515 nm and the emission color is green.

Key words: ionic iridium complex; 2,2'-bipyridine; light-emitting electrochemical cells; light-physical property; crystal

近些年,金属铱配合物因具有高的发光效率、 颜色可调、良好的热稳定性、制备简单、激发态寿 命长等特点,慢慢地成为科研工作者研究的一个热 点课题^[1-4]。到目前为止,金属铱配合物在化学传感 器、电致发光器件、细胞成像、光催化和非线性光 学等多个领域都有潜在的应用前景和市场价值^[5-9]。

到目前为止,对于离子型铱配合物,除了具有 中性铱配合物良好的热稳定性、颜色可调、高的发 光效率、容易制备等特点外,还具有纯化简单、溶 解性好等特点,受到很多科研工作者的关注。2010 年, Myldak 课题组^[10]合成出一系列新型铱配合物, 并制备了波长在 488 nm 的蓝绿色的发光器件,发 现器件的最大亮度从 14 cd/m² 到 45 cd/m²不等。之 后他们又把辅助配体换成咔宾类衍生物,抗衡离子 为 BF4⁻和 PF6⁻,合成出来另一系列的新型离子型铱 配合物^[11]。国内 He 等^[12]以 ppy 和 dfppy 为环金属 配体,pzpy 为辅助配体,合成出发射蓝光的阳离子 型铱配合物[Ir(ppy)₂(pzpy)]PF6 和[Ir(dfppy)₂(pzpy)] PF6°并制备了[Ir(ppy)₂(pzpy)]PF6 的蓝绿色的发光电 化学池(LECs)器件,电流效率为 4.3 cd/A。当在 ppy

收稿日期: 2022-09-27

基金项目:云南贵金属实验室科技计划项目(YPML-2023050217);云南省金属有机分子材料与器件重点实验室(202205AG070004)

第一作者:陈洪来,男,工程师;研究方向:贵金属化学; E-mail: chenhonglai@ipm.com.cn

^{*}通信作者: 晏彩先, 女, 高级工程师; 研究方向: 贵金属有机化合物合成; E-mail: yex19860706@163.com

上引入两个吸电子基团-F,使得整个配合物发生蓝 移,得到了蓝色发光器件,CIE坐标为(0.20,0.28)。 该课题组^[13]为提高器件的稳定性,又选用具有分子 内 π-π 堆积的辅助配体 phpzpy,制备出了[Ir(ppy)₂ (phpzpy)]PF₆。最终结果证明,此配合物的器件寿命 相对前面两个都大大提高了,时长可以达到 950 min,最大亮度为 37 cd/m²,最大流明效率为 8.7 cd/A。而为了提高 LECs 的效率,He Lei 课题组^[14] 成功合成出辅助配体含伞状的阳离子型铱配合物 [Ir(dfppz)₂(tp-pyim)]PF₆。制备出的器件,在 3.2 V 下发射蓝绿光,流明效率为 18 lm/w,是基于离子 型铱配合物发射蓝绿光发光器件效率较高的 LECs。

本文制备一种联吡啶类铱配合物[Ir(dfppy)₂ (bpy)]PF₆。选择 2-(2,4-二氟苯基)吡啶为主配体,2,2'-联吡啶为辅助配体,抗衡阴离子为六氟磷酸根。并 使用各种分析手段对铱配合物的化学结构进行了表 征,同时,研究它的光物理性质,为发光电化学池 器件提供发光层的选择。

1 实验部分

1.1 试剂与仪器

二氯甲烷、甲醇、乙醇(A.R,西陇化工股份有限公司),硅胶(200-300目,青岛烟台),2,2'-联吡啶、 六氟磷酸钾(A.R,阿拉丁),二聚体(dfppy)4Ir₂(µ-Cl₂) 为本实验室合成^[15]。

表征使用的设备包括 Bruker DRX-500 核磁共 振仪; VARIO EL III 元素分析仪; FTS-135 型红外 光谱仪; HCT 质谱仪; 日立 F-7000 荧光分光光度 计; U-3900 型紫外可见分光光度仪。

1.2 [Ir(dfppy)₂(bpy)]PF₆的合成

在反应瓶中依次加入(dfppy)₄Ir₂(μ-Cl₂)(1.20 g, 0.99 mmol)、2,2'-联吡啶(bpy)(0.36 g, 2.28 mmol), 再加入 50 mL CH₂Cl₂和 CH₃OH 的混合溶液(两者溶 剂的体积比为 1:1),室温搅拌 5 min 后,在氩气保 护下,回流反应 3 h,降到室温。然后在反应瓶中继 续加入 KPF₆(0.61 g, 3.32 mmol),室温搅拌 2 h。过 滤,滤液除去溶剂,过滤,干燥,得到粗品。

粗品利用柱层析硅胶柱子纯化,洗脱剂为 CH₂Cl₂,最终得到纯品黄色固体 1.52 g,产率 87.9%。

2 结果与讨论

2.1 配合物的合成

目标产物的合成路线如图 1 所示。本文以 (dfppy)₄Ir₂(μ-Cl₂)和bpy为原料,在CH₂Cl₂和CH₃OH 的混合溶剂回流反应,然后再与过量的KPF₆反应。 该合成方法反应条件温和,操作简单,产率高。

图 1 [Ir(dfppy)2(bpy)]PF6 的合成路线

Fig.1 Synthetic scheme of the complex [Ir(dfppy)₂(bpy)]PF₆

2.2 配合物的表征

[Ir(dfppy)₂(bpy)]PF₆: 黄色固体 1.52 g, 产率 87.9%。核磁共振(¹H NMR、¹³C NMR)、质谱(MS)、 元素分析和红外光谱(IR)表征结果为:¹H NMR (500 MHz, DMSO- d_6) δ 8.91 (d, J = 8.2 Hz, 2H), 8.30 (qd, J = 7.7, 1.8 Hz, 4H), 8.02 (td, J = 8.0, 1.6 Hz, 2H), 7.92 (dd, J = 5.5, 1.5 Hz, 2H), 7.71 (ddd, J = 9.5, 5.6, 1.5 Hz, 4H), 7.24 (ddd, J = 7.4, 5.8, 1.4 Hz, 2H), 6.94 (ddd, J = 12.2, 9.4, 2.4 Hz, 2H), 5.62 (dd, J = 8.4, 2.4Hz, 2H)[°] ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.81, 162.79, 162.73, 161.83, 161.78, 159.76, 155.17, 154.60, 154.55, 150.31, 149.67, 140.27, 140.07, 129.15, 127.62, 125.31, 124.60, 123.50, 123.35, 113.35, 113.21, 99.29, 99.08, 98.86 MS: m/z = 729(calcd. 729 for [Ir(dfppy)2(bpy)]PF6)。元素计算值(%): C 43.99, H 2.31, N 6.41; 元素分析实测值(%): C 43.95, H 2.32, N 6.40。红外光谱特征波段/cm⁻¹: 842 cm⁻¹为 dmpg 苯环上的间二取代; 1429、1448、1479、 1517、1574、1604 cm⁻¹ 处的吸收峰归属于苯环上 C=C 的吸收谱带, 3084、2330 cm⁻¹为 Ar-H 的伸缩 振动。

2.3 铱配合物的单晶结构分析

对配合物[Ir(dfppy)₂(bpy)]PF₆进行了晶体培养, 使用二氯甲烷和甲醇混合溶剂中通过缓慢挥发法得 到的配合物的晶体。并在 150(2) K 条件下,选取大 小为 0.320 mm×0.230 mm×0.130 mm 的黄色透明晶 体进行 X 射线衍射实验。在 Bruker Smart 1000 CCD 面探衍射仪上,用经石墨单色器单色化的(Mo Kα) 射线(μ= 10.133 mm⁻¹),采集 θ 在 3.39°~72.22°范围 内的衍射点 70868 个,其中独立衍射点为 5828 个 (*R*int=0.0842)。图 2 对应的晶体学参数见表 1。使用 Olex2 解析目标化合物单晶结构,并利用 ShelXL 对 相应参数进行最小二乘法最小化修正。获得配合物 的晶体学参数、晶体结构、键长和键角等数据。

根据晶体学参数结果可知, [Ir(dfppy)₂(bpy)]PF₆ 化学式为 C₃₂H₂₀F₄IrN₄F₆P,属于单斜晶系,*P1₂₁/c1* 空间群。表1为配合物的主要晶体学参数,图2为 配合物的分子结构图,图3为配合物的晶体结构堆 积图。由分子结构图可以观察到,中心 Ir 原子分别 与两个环金属配体 dfppy 上的 C、N 原子配位形成 稳定的五元螯合环,同时与辅助配体 bpy 上的两个 N 原子配位形成一个六元螯合环,整个分子呈现六 配位的八面体几何结构。此外,中心 Ir 原子带正电, 在图中可以看出这个八面体结构附近存在保证配合 物的电荷平衡的负电荷抗衡阴离子 PF₆。由于主配 体 dfppy 和辅助配体 bpy 的空间位阻较大,因此在 晶胞堆积图3中可以看出在单个晶胞内分子数量较 少而且呈排列稀疏的重叠状。

表 2 为配合物主要键长和键角,从表中可以看 出主配体 dfppy 中 Ir-N 键、Ir-C 键的平均键长分别 为 0.2042(11) nm、0.1966(14) nm, 辅助配体 bpy 中 Ir-N 键的平均键长为 0.2068(15) nm。dfppy 上的 Ir-N 键长比 Ir-C 键长稍长, 说明 Ir-C 键的存在使得整个 配合物更加稳定。而辅助配体 bpy 的 Ir-N 键长比主 配体dfppy的Ir-N键长要长,这主要由于配位2-(2,4-二氟苯基)吡啶上的反馈键和 C 原子强电子作用导 致的。此外,从键角参数可以看出,C(21)-Ir(1)-C(32), N(3)-Ir(1)-C(21), C(32)-Ir(1)-N(2), N(3)-Ir(1)-N(2)和 N(3)-Ir(1)-N(1)的键角分别是 94.4(12)°、 82.2(9)°、89.3(7)°、98.1(7)°和85.9(7),配合物的中 心 Ir 原子与配体 dfppy、bpy 中参与配位的 C、N 原 子形成的夹角均接近 90°, 而 N(3)-Ir(1)- N(4)的键角 为172.2(9)°,键角均低于理想的180°,说明由于取 代基空间位阻和原子大小等原因,致使六配位的几 何结构为扭曲的八面体构型。

表1 配合物[Ir(dfppy)2(bpy)]PF6的晶体结构参数

Tab.1 Crystal structure parameters of [Ir(dfppy)2(bpy)]PF6

项目	数据		
分子式	$C_{32}H_{20}F_4IrN_4\cdot F_6P$		
分子量	873.69		
晶系	单斜晶系		
空间群	<i>P1</i> ₂₁ / <i>c</i> 1		
单胞系数:	_		
<i>a</i> , <i>b</i> , <i>c</i> /nm	0.92586(2), 2.60824(6), 1.23202(3)		
$\alpha, \beta, \gamma / (^{\circ})$	90, 96.77500(10), 90		
V/nm ³	3.80414(6)		
Ζ	4		
$D(\text{calcd})/(\text{g/cm}^3)$	1.964		
<i>F</i> (000)	1688		
θ range/(°)	3.39~72.22		
指数范围	$-11 \le h \le 11, -31 \le k \le 32, -15 \le l \le 15$		
GOF on F^2	3.807		
$R_1, wR_2 [I > 2\sigma(I)]$	0.1961, 0.6537		
R_1 , w R_2 (all data)	0.1984, 0.6588		

表 2 [Ir(dfppy)2(bpy)]PF6 的主要键长和键角

Tab.2 Selected bond lengths and angles of $[Ir(dfppy)_2(bpy)]PF_6$

键名	键长/(nm)	键名	键角/(°)
Ir(1)-N(1)	0.2082(14)	C(21)-Ir(1)-C(32)	94.4(12)
Ir(1)-N(2)	0.2054(16)	N(3)-Ir(1)-C(21)	82.2(9)
Ir(1)-N(3)	0.2004(11)	C(32)-Ir(1)-N(2)	89.3(7)
Ir(1)-N(4)	0.2079(12)	N(3)-Ir(1)-N(4)	172.2(9)
Ir(1)-C(21)	0.1849(15)	N(3)-Ir(1)-N(2)	98.1(7)
Ir(1)-C(32)	0.2082(14)	N(3)-Ir(1)-N(1)	85.9(7)

图 2 配合物[Ir(dfppy)2(bpy)]PF6的分子结构 Fig.2 Molecular structure of [Ir(dfppy)2(bpy)]PF6

图 3 [Ir(dfppy)2(bpy)]PF6的晶体结构堆积图 Fig.3 Packing diagram of [Ir(dfppy)2(bpy)]PF6

2.4 铱配合物的光物理性能分析

图4为配合物在室温下CH₂Cl₂溶剂中的紫外可 见光谱。样品在小于 350 nm 范围内具有较强的吸 收峰,归属于配体的 π-π*跃迁吸收;而大于 350 nm 波长区具有相对较弱的吸收峰,归属于 ¹MLCT, ¹LLCT, ³MLCT, ³LLCT 和配体自身的 ³π-π*跃迁。 这些特征吸收峰具有典型的离子型铱配合物吸收光 谱的特征^[16-20]。

图 5 为[Ir(dfppy)₂(bpy)]PF₆室温下在 CH₂Cl₂中的光致发光光谱,图中展示了一个宽而没有精细结构的发射。在常温下配合物显示出强的绿光发射,它的最大发射波长为 515 nm。本文合成的配合物与本课题组^[15]之前合成的对比,主配体是相同的,辅助配体之前的是引入给电子基团-C(CH₃)₃,最大发射波长为 500 nm,而本文在辅助配体上没有引入任何基团,发现没有引入其他基团的最大发射波长为 515 nm,而引入给电子基团-C(CH₃)₃的最大发射波长为 515 nm,而引入给电子基团-C(CH₃)₃的最大发射波长为 515 nm,而引入给电子基团-C(CH₃)₃的最大发射波长为 515 nm,而引入给电子基团-C(CH₃)₃的最大发射波长为 515 nm,而引入给电子基团-C(CH₃)₃的最大发射波

3 结论

 以氯桥二聚体(dfppy)₄Ir₂(μ-Cl₂)、bpy 和 KPF₆ 为原料, 合成了一种离子型铱配合物 [Ir(dfppy)₂(bpy)]PF₆, 产率为87.9%。

2) 通过元素分析、核磁共振、红外光谱、质谱 表征了配合物的化学结构和组成,结果证实配合物 的化学式为C₃₂H₂₀F₄IrN₄F₆P,属于单斜晶系,*Pl₂₁/c1* 空间群。

3) 紫外可见光谱和光致发光光谱测试结果表

Fig.5 Photoluminescence spectra of [Ir(dfppy)2(bpy)]PF6

明,通过在辅助配体上不引入任何基团,与在辅助 配体上引入给电子基团的配合物相比,整个配合物 最大发射波长红移,说明改变辅助配体上的基团可 实现离子型铱配合物发光颜色和波长的调节。

参考文献:

- ZHAO Q, HUANG C, LI F Y. Phosphorescent heavymetal complexes for bioimaging[J]. Chemical Society Reviews, 2011, 40(5): 2508-2524.
- [2] KIM K H, MOON C K, LEE J H, et al. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole miments[J]. Advanced Materials, 2014, 26(23): 3844-3851.
- [3] ADACHI C, KWONG R C, DJUROVICH P, et al. Endothermic energy transfer: A mechanism for generating very dfficient high-energy phosphorescent emission in organic materials[J]. Applied Physics Letters, 2001, 79(13): 2082.
- [4] COSTA R D, OTTI E, BOLINK H J, et al. Luminescent ionic transition-metal complexes for light-emitting electrochemical cells[J]. Angewandte Chemie. International Ed. in English, 2012, 51(33): 8178-8211.
- [5] HE L, DUAN L, QIAO J, et al. Highly efficient blue-green and white light-emitting electrochemical cells based on a cationic iridium complex with a bulky side group[J]. Chemistry of Materials, 2010, 22(11): 3535-3542.
- [6] KANG Y, CHANG Y L, LU J S, et al. Highly efficient blue phosphorescent and electroluminescent Ir(III) compounds[J]. Journal of Materials Chemistry, 2013(1): 441-450.
- [7] 王姿奥, 刘学, 陈祝安, 等. 一种离子型铱磷光配合物的合成及表征[J]. 贵金属, 2021, 42(3): 31-36.
 WANG Z A, LIU X, CHEN Z A, at el. Synthesis and characterrization of an ionic iridium phosphorescent complex[J]. Precious Mettals, 2021, 42(3): 31-36.
- [8] LI G F, GUAN W, DU S, et al. Anion-specific aggregation induced phosphorescence emission(AIPE) in an ionic iridium complex in aqueous media[J]. Chemical Communications, 2015, 51: 16924-16927.
- [9] SLINKER J D, GORODETSKY A A, LOWRY M S, et al. Efficient yellow electroluminescence from a single layer of a cyclometalated iridium complex[J]. Journal of the American Chemical Society, 2004, 126(9): 2763-2767.
- [10] MYDLAK M, BIZZARRI C, HARTMANN D, et al. Positively charged iridium(III) triazole derivatives as blue emitters for light-emitting electrochemical cells[J]. Advanced Functional Materials, 2010, 20(11): 1812-1820.
- [11] YANG C H, BELTRAN J, LEMAUR V, et al. Iridium

metal complexes containing N-heterocyclic carbene ligands for blue-light-emitting electrochemical cells[J]. Inorganic Chemistry, 2010, 49(21): 9891-9901.

- [12] HE L, DUAN L, QIAO J, et al. Near-quantitative internal quantum efficiency in a light-emitting electrochemical cell[J]. Advanced Functional Materials, 2008, 18(14): 2123.
- [13] HE L, DUAN L, QIAO J, et al. Enhanced stability of blue-green light-emitting electrochemical cells based on a cationic iridium complex with 2-(1-phenyl-1H-pyrazol-3-yl) pyridine as the ancillary ligand[J]. Chemical Communications, 2011, 47(22): 6467-6469.
- [14] HE L, DUAN L, QIAO J, et al. Highly efficient bluegreen and white light-emitting electrochemical cells based on a cationic iridium complex with a bulky side group[J]. Chemistry of Materials, 2010, 22(11): 3535-3542.
- [15] 晏彩先,李杰,常桥稳. [Ir(dfppy)₂(dtbbpy)] ⁺PF₆⁻铱配 合物的合成、晶体结构及光物理性能测试[J]. 功能材料 与器件学报, 2019, 25(2): 117-123.
 YAN C X, LI J, CHANG Q W. Synthesis, crystal structure and light-physical properties of [Ir(dfppy)₂(dtbbpy)]⁺PF₆⁻ complex[J]. Journal of Functional Materials and Devices, 2019, 25(2): 117-123.
- [16] QIANG J Y, XUY Q, TONG B H, et al. Synthesis, characterization, luminescence properties, and DFT calculation of a cationic cyclometalated iridium(III) complex with fluorine-containing phenylquinolinyl and 2,2'-bipyridine ligands[J]. Inorganica Chimica Acta, 2013, 394: 184.
- [17] ERTL C D, MOMBLONA C, PERTEGAS A, et al. Highly stable red-light-emitting electrochemical cells[J]. Journal of the American Chemical Society, 2017, 139(8): 3237.
- [18] 吕玉光,石琦,郭强,等. 1,10-菲啰啉-四氰基乙烯配合物发光性质的研究[J].光谱学与光谱分析,2018,32(2):634-637.
 LU Y G, SHI Q, GUO Q, et al. Studies on luminescent

properties of TCNE-phenanthroline complex[J]. Spectroscopy and Spectral Analysis, 2018, 32(2): 634-637.

- [19] HU T, DUAN L, QIAO J, et al. Stable blue-green lightemitting electrochemical cells based on a cationic iridium complex with phenylpyrazole as the cyclometalated ligands[J]. Organic Electronics, 2012, 13(10): 1948-1955.
- [20] 晏彩先,许明明,陈祝安,等. 一种喹啉类铱配合物的 合成及光物理性能研究[J]. 贵金属, 2022, 43(4): 31-36.
 YAN C X, XU M M, CHEN Z A, et al. Synthesis and photophysical properties of a quinolone iridium complex
 [J]. Precious Metals, 2022, 43(4): 31-36.