顺式-二氯[(1R,2R)-(-)-环己二胺]合铂(II)的合成与结构表征

高安丽¹, 郭旭虎¹, 余 娟¹, 周 鹏^{2,3*}

(1. 昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,昆明 650106;2. 昆明医科大学第二附属医院 药学部,昆明 650101;3. 昆明医科大学 药学院 云南省天然药物药理重点实验室,昆明 650500)

摘 要:顺式-二氯[(1R,2R)-(-)-环已二胺]合铂是一种铂类抗癌药物及一种合成药效基团为 (1R,2R)-(-)-环已二胺的铂类抗癌药物的中间体。通过两种常规方法合成了顺式-二氯[(1R,2R)-(-)-环已 二胺]合铂, 产率均高达 90%以上,并采用元素分析、核磁共振谱、红外光谱及 X-射线单晶衍射分 析对其进行了结构表征。结果表明:此化合物的单晶结构含有 1 分子结晶水,为单斜晶系, C2 空 间群,晶胞参数为:a=12.753(3) nm, b=6.8749(16) nm, c=12.325(3) nm, a=90°, β =97.577(3)°, γ = 90°, V= 1071.1(4) nm³, Z=4, Pt-N 键长分别为 2.047 和 2.027 nm, Pt-Cl 键长分别为 2.326 和 2.330 nm, 且 Pt²⁺、N 和 Cl 不在同一平面上,可能与结晶水、两个交错排列的分子间 N-H…Cl 氢键的存在有 关。

关键词: 顺式-二氯[(1*R*,2*R*)-(-)-环己二胺]合铂; 抗癌药物; 合成; 结构表征 中图分类号: O627.8 文献标识码: A 文章编号: 1004-0676(2023)S1-0100-07

Synthesis and structural characterization of *cis*-dichloro[(1*R*,2*R*)-(-)-cyclohexanediamine]platinum(II)

GAO Anli¹, GUO Xuhu¹, YU Juan¹, ZHOU Peng^{2, 3*}

(1. State key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,

Kunming Institute of Precious Metals, Kunming 650106, China;

2. Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

3. School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products,

Kunming Medical University, Kunming 650500, China)

Abstract: *Cis*-dichloro[(1*R*,2*R*)-(-)-cyclohexanediamine]platinum(II) is an anticancer drug or an intermediate for the synthesis of many anticancer drugs with the carrier group (1*R*,2*R*)-(-) -cyclohexanediamine. It was synthesized by two conventional methods with a yield of above 90% and characterized by elemental analysis, ¹H- and ¹³C- NMR, IR and X-ray single crystal diffraction analysis. The single-crystal structure cultivated by a solvent evaporation method contains one crystallization water molecule, belongs to monoclinic crystal system and *C*2 space group, the unit cell parameters are *a*=12.753 nm, *b*=6.8749 nm, *c*=12.325 nm, *a*=90°, *β*=97.577°, *γ*=90°, V=1071.1 nm³, *Z* = 4, Pd-N bond lengths are 2.047 and 2.027 nm as well as Pd-Cl are 2.326 and 2.330 nm, respectively, and Pt²⁺, N and Cl is not on the same plane, which may be due to the presence of one crystallization water molecule and N-H…Cl hydrogen-bond between two staggered molecules.

收稿日期: 2023-08-14

基金项目: 云南省基础研究专项面上项目(202001AT070090); 云南省技术创新人才项目((202305AD160019); 云南省转制科研院所技术 开发研究专项(202104AR040016); 云南省科技计划项目(202102AB080007); 云南贵金属实验室科技计划项目(YPML-2022050231)

第一作者:高安丽,女,硕士,高级工程师;研究方向:贵金属化学; E-mail:gaoanli@126.com

^{*}通信作者:周 鹏,男,博士,主管药师;研究方向:药理学; E-mail: 286634077@qq.com

以顺铂、卡铂和奥沙利铂为代表的铂类抗癌药 物是一类非常重要的化疗药物,其抗癌活性强、作 用机制独特, 广泛用于常见多发的恶性肿瘤的临床 治疗[1-3]。目前已批准上市的铂类抗癌药物均为四配 位平面构型的 Pt(II)配合物,具有如下通式: *cis*-[Pt(II)A₂X₂], 其中, A₂代表药效基团, 为 2NH₃、 (1R,2R)-(-)-环己二胺等; X2代表离去基团,为2Cl-、 1,1-环丁烷二羧酸根、C2O42-等[4-6]。铂类抗癌药物 的药效基团和 Pt 形成热力学稳定的化学键而保留 于最终形成的 Pt-DNA 加合物中,因此,药效基团 决定着铂类抗癌药物的本质和耐药性[7]。而铂类药 物一旦与 DNA 绑定就会失去离去基团 X, 故此, 离去基团直接影响着铂类抗癌药物化学反应计量学 和水合反应动力学[8]。抗癌药物顺式-二氯 [(1R,2R)-(-)-环己二胺]合铂作为顺铂的类似物,具有 与顺铂相同的离去基团和不同的药效基团(图1),使 得它比顺铂毒性低且与顺铂无交叉耐药[9];同时, 顺式-二氯[(1R,2R)-(-)-环己二胺]合铂作为奥沙利铂 的同系物,两者药效基团相同而离去基团不同,避 免了奥沙利铂的离去基团 C2O42-与血液中的钙离子 结合可能带来的神经毒性[10],而且,其抗癌活性明 显高于奥沙利铂[11]。综上所述,顺式-二氯 [(1R,2R)-(-)-环己二胺]合铂集合了顺铂和奥沙利铂 的若干优点,但溶解性低和稳定性差限制了它的临 床应用[9]。

顺式-二氯[(1R,2R)-(-)-环己二胺]合铂的结构式

Fig.1 Chemical structures of cisplatin, oxaliplatin and *cis*-dichloro[(1*R*,2*R*)-(-)-cyclohexanediamine]platinum

顺式-二氯[(1*R*,2*R*)-(-)-环己二胺]合铂还是许多 药效基团为(1*R*,2*R*)-(-)-环己二胺的铂类抗癌药物合 成所需的中间体,如奥沙利铂、米铂、四铂等^[12-14]。 因此,研究顺式-二氯[(1*R*,2*R*)-(-)-环己二胺]合铂的 合成方法及结构表征具有重要的参考意义。本文采 用两种常规方法合成了顺式-二氯[(1*R*,2*R*)-(-)-环己 二胺]合铂,并采用元素分析、核磁共振谱、红外光 谱及 X-射线单晶衍射分析对其进行了结构表征。

1 实验

1.1 试剂

氯亚铂酸钾(K₂PtCl₄),贵研铂业股份有限公司; (1*R*,2*R*)-(-)-环己二胺,分析纯(98%),西亚化学科技 (山东)有限公司;碘化钾(KI),分析纯(≥98.5%),天 津基准化学试剂有限公司;氯化钾(KCl),分析纯 (≥99.5%),汕头市西陇化工厂有限公司,硝酸银 (AgNO₃),分析纯(≥99.8%),云南景锐科技有限公司; 其余试剂均为分析纯。

1.2 合成步骤

1) 合成方法一:将氯亚铂酸钾(10.00 g, 24 mmol)加入 80 mL 水中,在 35~40 ℃避光搅拌下,加入碘化钾(18.30 g, 110 mmol)的饱和水溶液,反应 2 h 后,缓慢滴加等摩尔(1*R*,2*R*)-(-)-环己二胺的水溶液(体积比为 1:1),继续反应 4 h,冷却至室温,过滤,水洗 3 次,无水乙醇洗涤 1 次,干燥后称重,得到 12.90 g 黄色固体。将此固体加入 20 mL 水中,超声波震荡至均匀糊状,在 40~45 ℃避光搅拌下,加入硝酸银(3.75 g, 22 mmol)的饱和水溶液,反应 6 h,检查至反应终点后,终止反应,冷却至室温,过滤,得到淡黄色清亮滤液,滤液置于 60 ℃水浴中,加入氯化钾(3.36 g, 45 mmol),搅拌反应 2 h,冷却 至室温,过滤,水洗 3 次,无水乙醇洗涤 2 次,得到 8.25 g 黄色固体,产率为 90.1%。

2) 合成方法二:称取氯亚铂酸钾(10.00 g, 24 mmol),加入 80 mL 水中,在 60 ℃避光搅拌条件下,缓慢滴加等摩尔(1*R*,2*R*)-(-)-环己二胺的水溶液(体积比为 1:1),搅拌 4 h,冷却至室温,过滤,水洗 3次,无水乙醇洗涤 2次,干燥,得到 8.55 g 黄色固体,产率为 93.4%。

 4 晶培养。取少量产物溶于饱和氯化钠水溶 液和甲醇的混合溶剂中,体系密封放置,令溶剂缓 慢挥发,得到黄色针状晶体。

1.3 分析表征

1.3.1 元素分析

采用文献[15]方法测定化合物中的铂含量,并 用元素分析仪(Varlo EL III,德国 Elementar 公司)测 定化合物中碳、氢、氮含量。

1.3.2 核磁表征

将样品溶于 DMSO-d₆ 溶剂中,在 Bruker AVANCE III 500MHz 型核磁共振仪上进行测试。化 学位移以四甲基硅烷(TMS)为内标,单位为 10⁻⁶。 1.3.3 红外光谱

以 KBr 压片法,采用 Bruker PMA-50 型红外光 谱仪在 400~4000 cm⁻¹ 区间进行扫描对样品进行红 外光谱测定。

1.3.4 X射线单晶衍射分析

选取大小为 0.900 nm ×0.140 nm × 0.100 nm, 黄 色针状、透明且形貌规则的单晶置于 Bruker Smart APEX II CCD 型单晶衍射仪上,用经石墨单色器单 色化的 Mo-Ka 射线(λ=0.71073 nm),在 101(2)K 温 度下,以 ω=2θ 扫描方式收集衍射数据。采用 SHELXTL 程序计算,用直接法进行解析相角,用 数论差值 Fourier 合成法获得非氢原子和部分氢原 子的坐标,再用全矩阵最小二乘法进行结构修正, 非氢原子通过各向异性温度因子进行精修,氢原子 由理论计算确定,最终确定了化合物的晶体结构。

2 结果与讨论

2.1 合成路线

目标化合物的两条合成路线如图 2 所示,合成 产率均高达 90%以上。两条合成路线各有优缺点: 方法一的步骤较长,且在合成二水合化合物中间体 的过程中,生成的碘化银沉淀较难过滤。而方法二 只需一步即可合成最终产物,但此方法并不适用于 所有结构式为 *cis*-[Pt(II)A₂Cl₂]的化合物的合成,主 要有以下两个原因:其一,当 2A 为 2NH₃等 2 个单 胺基时,由于 I 的反位效应大于 Cl⁻,采用方法一更 易生成 *cis*-化合物;其二,当 2A 为乙二胺,1,3-丙 二胺等二胺化合物时,也不适用于方法二,因为容 易生成马格努斯盐(Magnus salt)。

图 2 目标化合物的合成路线

Fig.2 Synthetic routes of the target complex

2.2 元素分析

对化合物顺式-二氯[(1*R*,2*R*)-(-)-环己二胺]合铂 进行元素分析,测得该化合物的铂含量为50.88%, 与铂含量理论值(51.32%)基本一致。化合物中 C、H、 N 元素含量的测定值分别为 C(18.31%)、H(4.09%)、 N(6.88%),与分子式 C₆H₁₄N₂Cl₂Pt 中各元素理论值 C(18.95%)、H(3.68%)、N(7.37%)吻合。

2.3 核磁共振分析

目标化合物在 DMSO-d₆中的¹³C NMR 谱图如

图 3 所示, 化学位移 δ(10⁻⁶, 126 MHz)为: 61.98(m), 39.52(dp, J=42.1, 21.1 Hz), 31.47(m), 24.01(m)。其 中, 61.98 处的峰为环己基的次甲基碳的峰, 39.52 处七重峰归属于 DMSO-*d*₆的碳, 31.47 和 24.01 两 处峰对应于环己基亚甲基碳的峰。与 ¹H NMR 谱图 类似, 环己二胺的反式构型导致环己基上次甲基和 亚甲基碳的化学位移略有不同。

Fig.3 ¹³C NMR spectrum of the complex

目标化合物在 DMSO-*d*₆中的 ¹H NMR 谱图如 图 4 所示,化学位移 δ(10⁻⁶,500 MHz)为: 6.44~4.92 (m, 4H), 3.33 (s, 1H), 2.50 (p, J=1.8 Hz, 1H), 2.42~2.06 (m, 2H), 1.98~1.79 (m, 2H), 1.56~1.16 (m, 4H), 0.98 (dddd, *J* = 32.3, 12.2, 9.0, 2.5 Hz, 2H), -0.01(s, 0H)。其中, 6.44~4.92 处的多重峰归属于 2 个胺基的氢, 3.33 处单峰为 DMSO-*d*₆ 中携带的水的 氢峰, 2.50 处五重峰是 DMSO-*d*₆ 中携带的水的 氢峰, 2.50 处五重峰是 DMSO-*d*₆ 甲基的氢峰, 2.42~2.06 处多重峰对应于环己基的次甲基氢, 1.98~1.79、1.56~1.16 和 0.98 三处多重峰来自于环 己基的亚甲基氢, 而-0.01 处单峰为内标四甲基硅烷 的氢峰。由于化合物中(1*R*,2*R*)-(-)-环己二胺为反式 构型,导致环己二胺上胺基氢、次甲基氢和亚甲基 氢在空间上略不对称,在 ¹H NMR 谱图中表现为化 学位移稍有差异。

2.4 红外光谱分析

对化合物进行红外光谱表征,如图 5 所示,3270 cm⁻¹和 3185 cm⁻¹处峰为胺基 N-H 伸缩振动,2935 和 2865 cm⁻¹处峰为 C-H 伸缩振动,1564 cm⁻¹处峰 为 N-H 面内变形振动,1450 cm⁻¹处峰为 N-H 面内 变形振动,1208 cm⁻¹、1157 cm⁻¹、1125 cm⁻¹和 1092 cm⁻¹处峰为 C-C 伸缩振动,1062 cm⁻¹和 1029 cm⁻¹ 处峰为 C-N 伸缩振动,567 cm⁻¹处峰为 Pt-N 伸缩振 动,502 cm⁻¹处峰为 Pt-Cl 伸缩振动。

2.5 晶体结构分析

采用溶剂挥发法,成功培养出化合物的单晶, 并采用 X-射线衍射分析得到该化合物的空间结构 图和晶胞堆积图,分别如图6和图7所示,主要晶 体衍射数据如表1所列,主要非氢原子坐标和等效 温度因子如表 2 所示, 主要键长和键角列于表 3。 由图 6 可以清晰地看出,此化合物的晶体结构含有 1分子结晶水,环己二胺为反式构型, Pt-N 键长分 别为 2.027 和 2.047 nm, Pt-Cl 键长分别为 2.326 和 2.330 nm, C-N 键长分别为 1.476 和 1.500 nm。由 4 个∠N-Pt-Cl 值可以看出, Pt²⁺、N 和 Cl 不处于同一 平面,但近似于一个平面,可能与结晶水、两个交 错排列的分子间 N-H…Cl 氢键的存在有关。在环己 烷中,相邻碳之间的键长和键角也略有差异,平均 键长为 1.536 nm, 平均键角为 109.9°。由(反式-环 己二胺)铂(II)配合物的立体结构看出,它的抗癌活 性明显高于(顺式-环己二胺)铂(II)异构体,可能归因 于反式-环己二胺的环己烷环及其与铂(II)构成的螯 合环近似于处于同一平面, 使得(反式-环己二胺)铂 (II)配合物更容易接近 DNA 链并与 DNA 碱基作用, 而(顺式-环己二胺)铂(II)配合物的环己烷环和螯合 环几乎垂直,产生空间位阻效应,阻碍其与 DNA 分子作用[16]。

3 结论

以氯亚铂酸钾为原料,采用两种方法合成顺式-二氯[(1*R*,2*R*)-(-)-环己二胺]合铂,产率均大于 90%。 采用元素分析、核磁共振谱和红外光谱对产物进行 了结构表征,结果表明产物结构与目标化合物一致。 通过溶剂挥发法培养出其单晶,经 X-射线单晶衍射 分析确证了该化合物的晶体结构,含有 1 分子结晶 水,为单斜晶系,*C*2 空间群,晶胞参数为: a=12.753(3) nm,b=6.8749(16) nm,c=12.325(3) nm, $a=90^{\circ}$, $\beta=97.577(3)^{\circ}$, $\gamma=90^{\circ}$, V=1071.1(4) nm³, Z=4, Pt-N 键长分别为 2.047 nm 和 2.027 nm, Pt-Cl 键长分别为 2.326 nm 和 2.330 nm,且环己烷环及 Pt²⁺、N、Cl 组成的螯合环不处于同一平面,但近似 于一个平面,使得(反式-环己二胺)铂(II)配合物的抗 癌活性明显高于(顺式-环己二胺)铂(II)异构体。

图 6 [Pt((1R,2R)-(-)-DACH)Cl2]的空间结构图 Fig.6 Molecular structure of [Pt((1R,2R)-(-)-DACH)Cl2]

图 7 [Pt((1R,2R)-(-)-DACH)Cl2]的晶胞堆积图 Fig.7 Crystal packing of [Pt((1R,2R)-(-)-DACH)Cl2]

表1 [Pt((1R,2R)-(-)-DACH)Cl2]的主要晶体衍射数据

Tab.1 Crystal data and structure refinement fo	or [Pt((1 <i>R</i> ,2 <i>R</i>)-(-)-DACH)Cl ₂]
--	---

项目	数据	项目	数据	
分子式	$C_6H_{16}Cl_2N_2OPt$	F(000)单胞中电子数目	744	
Fw(相对分子质量)	398.20	晶体尺寸/mm	$0.900 \times 0.140 \times 0.100$	
温度/K	100(2) K		1.667°~30.949°	
晶系	单斜	衍射指标	-16<=h<=17, -9<=k<=9, -16<=l<=17	
空间群	<i>C</i> 2	收集衍射点数目	5652	
晶胞参数	$a = 12.753(3) \text{ nm}, a=90^{\circ}$	独立衍射点数目	2970 [R(int) = 0.0327]	
	$b=6.8749(16) \text{ nm}, \beta=97.577(3)^{\circ}$	参加精修衍射点数目/几	2070/7/110	
	$c=12.325(3) \text{ nm}, \gamma=90^{\circ}$	何限制数/参数数目	2970/7/110	
体积	1071.1(4) nm ³	可观测衍射点 S 值	1.201	
Ζ	4	可观测衍射点 R 值	R1 = 0.0320, wR2 = 0.0962	
晶体密度	2.469 mg/m ³	全部衍射点 R 值	R1 = 0.0334, wR2 = 0.0971	
线性吸收系数	13.559 mm ⁻¹	移动值(最大/平均)	1.679 e·Å ⁻³ /-3.758 e·Å ⁻³	

表 2 [Pt((1R,2R)-(-)-DACH)Cl2]的主要原子坐标

Tab.2 Fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathbb{A}^2 \times 10^3$) for [Pt((1R,2R)-(-)-DACH)Cl_2]

原子	x	У	Z	U(eq)	原子	x	У	Ζ	U(eq)
Pt	2.490(1)	4992(4)	4918(1)	13(1)	O(2)	5000	5060(70)	5000	32(3)
Cl(1)	3657(2)	4916(9)	3618(2)	18(1)	C(6)	4064(9)	4810(40)	8206(8)	29(3)
Cl(2)	982(2)	5067(9)	3626(2)	20(1)	C(1)	3306(8)	5456(13)	7198(8)	18(2)
N(1)	3711(5)	4890(30)	6174(6)	14(1)	C(5)	3575(10)	5440(30)	9251(10)	48(6)
O(1)	0	4910(80)	5000	34(3)	C(2)	2243(8)	4521(12)	7201(8)	18(2)
N(2)	1583(6)	5080(30)	6149(6)	19(2)	C(4)	2476(11)	4520(19)	9243(10)	36(4)
C(3)	1732(7)	5110(30)	8215(7)	20(2)	/	/	/	/	/

表 3 [Pt((1R,2R)-(-)-DACH)Cl2]的主要键长和键角

Tab.3 Bond lengths and bond angles for [Pt((1*R*,2*R*)-(-)-DACH)Cl₂]

化学键键长/m化学键键角/m化学键键角/m化学键键角(m)化学键键角(m)化学键键角(m)化学键键角(m)Pt-N22.027(7)C3-H3B0.9900N2-Pt-N183.5(3)C2-N2-H2A109.8N2-C2-C1106.9(9)Pt-N12.047(7)C6-C11.536(15)N2-Pt-C11175.1(2)Pt-N2-H2A109.8N2-C2-C3112.6(9)Pt-C112.326(2)C6-C51.566(17)N1-Pt-C1191.7(2)C2-N2-H2B109.8C1-C2-C3111.6(9)Pt-C122.330(2)C6-H6A0.9900N2-Pt-C1290.6(2)Pt-N2-H2B109.8N2-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-C12174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-C1294.31(8)C4-C3-C2108.6(10)C3-C2+H2108.5N1-H1A0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(1)C3-C4-C5111.1(1)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C2107.9(8)-N2-H2B0.9100C5-H5A0.9900C1-N1-H1B109.9N1-C1-C6111.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9) <tr< th=""><th></th><th>-</th><th>-</th><th>=</th><th></th><th>=</th><th></th><th></th><th></th><th></th></tr<>		-	-	=		=				
Pt-N22.027(7)C3-H3B0.9900N2-Pt-N183.5(3)C2-N2-H2A109.8N2-C2-C1106.9(9)Pt-N12.047(7)C6-C11.536(15)N2-Pt-Cl1175.1(2)Pt-N2-H2A109.8N2-C2-C3112.6(9)Pt-Cl12.326(2)C6-C51.566(17)N1-Pt-Cl191.7(2)C2-N2-H2B109.8C1-C2-C3111.6(9)Pt-Cl22.330(2)C6-H6A0.9900N2-Pt-Cl290.6(2)Pt-N2-H2B109.8N2-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl2174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl294.31(8)C4-C3-C2108.6(10)C3-C2-H2108.5N1-H1A0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(11)C3-C4-C5111.1(11)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C6111.2(9)N2-H2A0.9100C5-H5A0.9900Pt-N1-H1A109.9N1-C1-C6111.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-H1109.2C3-C41.535(17)C2-H21.0000Pt-N1-H1B109.9N1-C1-H1109.2C3-C41.538(14)C4-H4A0.9900H1A-N1-H1B <td< td=""><td>化学键</td><td>键长/nm</td><td>化学键</td><td>键长/nm</td><td>化学键</td><td>键角/(°)</td><td>化学键</td><td>键角(°)</td><td>化学键</td><td>键角(°)</td></td<>	化学键	键长/nm	化学键	键长/nm	化学键	键角/(°)	化学键	键角(°)	化学键	键角(°)
Pt-N12.047(7)C6-C11.536(15)N2-Pt-Cl1175.1(2)Pt-N2-H2A109.8N2-C2-C3112.6(9)Pt-Cl12.326(2)C6-C51.566(17)N1-Pt-Cl191.7(2)C2-N2-H2B109.8C1-C2-C3111.6(9)Pt-Cl22.330(2)C6-H6A0.9900N2-Pt-Cl290.6(2)Pt-N2-H2B109.8N2-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl2174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-H1A0.9100C1-C21.501(14)C11-Pt-Cl294.31(8)C4-C3-C2108.6(10)C3-C2-H2108.5N1-H1B0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(11)C3-C4-C5111.1(11)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C2107.9(8)N2-H2A0.9100C5-H5A0.9900Pt-N1-H1A109.9N1-C1-C6111.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-H1109.2C3-C41.535(17)C2-H21.0000Pt-N1-H1B109.9N1-C1-H1109.2C3-C21.538(14)C4-H4A0.9900H1A-N1-H1B108.3C2-C1-H1109.2C3-H3A0.9900C4-H4B0.9900C2-N2-Pt109.2(7)C6-C1-H1109.2 <td>Pt-N2</td> <td>2.027(7)</td> <td>С3-Н3В</td> <td>0.9900</td> <td>N2-Pt-N1</td> <td>83.5(3)</td> <td>C2-N2-H2A</td> <td>109.8</td> <td>N2-C2-C1</td> <td>106.9(9)</td>	Pt-N2	2.027(7)	С3-Н3В	0.9900	N2-Pt-N1	83.5(3)	C2-N2-H2A	109.8	N2-C2-C1	106.9(9)
Pt-Cl12.326(2)C6-C51.566(17)N1-Pt-Cl191.7(2)C2-N2-H2B109.8C1-C2-C3111.6(9)Pt-Cl22.330(2)C6-H6A0.9900N2-Pt-Cl290.6(2)Pt-N2-H2B109.8N2-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl2174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-H1A0.9100C1-C21.501(14)C11-Pt-Cl294.31(8)C4-C3-C2108.6(10)C3-C2-H2108.5N1-H1B0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(11)C3-C4-C5111.1(11)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C2107.9(8)N2-H2A0.9100C5-H5A0.9900Pt-N1-H1A109.9N1-C1-C6111.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)C3-C41.535(17)C2-H21.0000Pt-N1-H1B109.9N1-C1-H1109.2	Pt-N1	2.047(7)	C6-C1	1.536(15)	N2-Pt-Cl1	175.1(2)	Pt-N2-H2A	109.8	N2-C2-C3	112.6(9)
Pt-Cl22.330(2)C6-H6A0.9900N2-Pt-Cl290.6(2)Pt-N2-H2B109.8N2-C2-H2108.5N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl2174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-H1A0.9100C1-C21.501(14)C11-Pt-Cl294.31(8)C4-C3-C2108.6(10)C3-C2-H2108.5N1-H1B0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(11)C3-C4-C5111.1(11)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C2107.9(8)N2-H2A0.9100C5-H5A0.9900Pt-N1-H1A109.9N1-C1-C6111.2(9) </td <td>Pt-Cl1</td> <td>2.326(2)</td> <td>C6-C5</td> <td>1.566(17)</td> <td>N1-Pt-Cl1</td> <td>91.7(2)</td> <td>C2-N2-H2B</td> <td>109.8</td> <td>C1-C2-C3</td> <td>111.6(9)</td>	Pt-Cl1	2.326(2)	C6-C5	1.566(17)	N1-Pt-Cl1	91.7(2)	C2-N2-H2B	109.8	C1-C2-C3	111.6(9)
N1-C11.476(12)C6-H6B0.9900N1-Pt-Cl2174.0(2)H2A-N2-H2B108.3C1-C2-H2108.5N1-H1A0.9100C1-C21.501(14)Cl1-Pt-Cl294.31(8)C4-C3-C2108.6(10)C3-C2-H2108.5N1-H1B0.9100C1-H11.0000C1-N1-Pt108.7(6)C1-C6-C5107.9(11)C3-C4-C5111.1(11)N1-C21.500(14)C5-C41.54(2)C1-N1-H1A109.9N1-C1-C2107.9(8)N2-H2A0.9100C5-H5A0.9900Pt-N1-H1A109.9N1-C1-C6111.2(9)N2-H2B0.9100C5-H5B0.9900C1-N1-H1B109.9N1-C1-C6110.2(9)C3-C41.535(17)C2-H21.0000Pt-N1-H1B109.9N1-C1-H1109.2C3-C21.538(14)C4-H4A0.9900H1A-N1-H1B108.3C2-C1-H1109.2C3-H3A0.9900C4-H4B0.9900C2-N2-Pt109.2(7)C6-C1-H1109.2	Pt-Cl2	2.330(2)	C6-H6A	0.9900	N2-Pt-Cl2	90.6(2)	Pt-N2-H2B	109.8	N2-C2-H2	108.5
N1-H1A 0.9100 C1-C2 1.501(14) C11-Pt-C12 94.31(8) C4-C3-C2 108.6(10) C3-C2-H2 108.5 N1-H1B 0.9100 C1-H1 1.0000 C1-N1-Pt 108.7(6) C1-C6-C5 107.9(1) C3-C4-C5 111.1(1) N1-C2 1.500(14) C5-C4 1.54(2) C1-N1-H1A 109.9 N1-C1-C2 107.9(8) N1-C1-C2 107.9(8) N1-C1-C6 111.2(9)	N1-C1	1.476(12)	C6-H6B	0.9900	N1-Pt-Cl2	174.0(2)	H2A-N2-H2B	108.3	С1-С2-Н2	108.5
N1-H1B 0.9100 C1-H1 1.0000 C1-N1-Pt 108.7(6) C1-C6-C5 107.9(11) C3-C4-C5 111.1(11) N1-C2 1.500(14) C5-C4 1.54(2) C1-N1-H1A 109.9 N1-C1-C2 107.9(8) N2-H2A 0.9100 C5-H5A 0.9900 Pt-N1-H1A 109.9 N1-C1-C6 111.2(9) N2-H2B 0.9100 C5-H5B 0.9900 C1-N1-H1B 109.9 N1-C1-C6 111.2(9) N2-H2B 0.9100 C5-H5B 0.9900 C1-N1-H1B 109.9 C2-C1-C6 110.2(9)	N1-H1A	0.9100	C1-C2	1.501(14)	Cl1-Pt-Cl2	94.31(8)	C4-C3-C2	108.6(10)	С3-С2-Н2	108.5
N1-C2 1.500(14) C5-C4 1.54(2) C1-N1-H1A 109.9 N1-C1-C2 107.9(8) N2-H2A 0.9100 C5-H5A 0.9900 Pt-N1-H1A 109.9 N1-C1-C6 111.2(9) N2-H2B 0.9100 C5-H5B 0.9900 C1-N1-H1B 109.9 C2-C1-C6 110.2(9) C3-C4 1.535(17) C2-H2 1.0000 Pt-N1-H1B 109.9 N1-C1-H1 109.2 C3-C2 1.538(14) C4-H4A 0.9900 H1A-N1-H1B 108.3 C2-C1-H1 109.2 C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	N1-H1B	0.9100	C1-H1	1.0000	C1-N1-Pt	108.7(6)	C1-C6-C5	107.9(11)	C3-C4-C5	111.1(11)
N2-H2A 0.9100 C5-H5A 0.9900 Pt-N1-H1A 109.9 N1-C1-C6 111.2(9) N2-H2B 0.9100 C5-H5B 0.9900 C1-N1-H1B 109.9 C2-C1-C6 110.2(9) C3-C4 1.535(17) C2-H2 1.0000 Pt-N1-H1B 109.9 N1-C1-H1 109.2 C3-C2 1.538(14) C4-H4A 0.9900 H1A-N1-H1B 108.3 C2-C1-H1 109.2 C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	N1-C2	1.500(14)	C5-C4	1.54(2)	C1-N1-H1A	109.9	N1-C1-C2	107.9(8)		
N2-H2B 0.9100 C5-H5B 0.9900 C1-N1-H1B 109.9 C2-C1-C6 110.2(9) C3-C4 1.535(17) C2-H2 1.0000 Pt-N1-H1B 109.9 N1-C1-H1 109.2 C3-C2 1.538(14) C4-H4A 0.9900 H1A-N1-H1B 108.3 C2-C1-H1 109.2 C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	N2-H2A	0.9100	C5-H5A	0.9900	Pt-N1-H1A	109.9	N1-C1-C6	111.2(9)		
C3-C4 1.535(17) C2-H2 1.0000 Pt-N1-H1B 109.9 N1-C1-H1 109.2 C3-C2 1.538(14) C4-H4A 0.9900 H1A-N1-H1B 108.3 C2-C1-H1 109.2 C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	N2-H2B	0.9100	C5-H5B	0.9900	C1-N1-H1B	109.9	C2-C1-C6	110.2(9)		
C3-C2 1.538(14) C4-H4A 0.9900 H1A-N1-H1B 108.3 C2-C1-H1 109.2 C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	C3-C4	1.535(17)	C2-H2	1.0000	Pt-N1-H1B	109.9	N1-C1-H1	109.2		
C3-H3A 0.9900 C4-H4B 0.9900 C2-N2-Pt 109.2(7) C6-C1-H1 109.2	C3-C2	1.538(14)	C4-H4A	0.9900	H1A-N1-H1B	108.3	C2-C1-H1	109.2		
	СЗ-НЗА	0.9900	C4-H4B	0.9900	C2-N2-Pt	109.2(7)	C6-C1-H1	109.2		

参考文献:

- KELLAND L. The resurgence of platinum-based cancer chemotherapy[J]. Nature Reviews Cancer, 2007, 7: 573-584.
- [2] CHEN X, WU Y, DONG H, et al. Platinum-based agents for individualized cancer treatment[J]. Current Molecular Medicine, 2013, 13: 1603-1612.
- [3] WILSON J J, LIPPARD S J. Synthetic methods for the preparation of platinum anticancer complexes[J]. Chemical Reviews, 2014, 114: 4470-4495.
- [4] ROTTENBERG S, DISLER C, PEREGO P. The rediscovery of platinum-based cancer therapy[J]. Nature Reviews Cancer, 2021, 21(1): 37-50.
- [5] WANG D, LIPPARD S J. Cellular processing of platinum anticancer drugs[J]. Nature Reviews Drug Discovery, 2005, 4: 307-320.
- [6] WANG X, GUO Z. Targeting and delivery of platinumbased anticancer drugs[J]. ChemInform, 2013, 42: 202-224.
- [7] RIXE O, ORTUZAR W, ALVAREZ M, et al. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: Spectrum of activity in drug-resistant cell lines and in the cell lines of the national cancer institute's anticancer drug screen panel[J]. Biochemical Pharmacology, 1996, 52(12): 1855-1865.
- [8] CLEARE M J; HOESCHELE J D. Anti-tumor Platinum Compounds[J]. Platinum Metals Review, 1973, 17(1): 2-13.
- [9] CABRAL H, NISHIYAMA N, OKAZAKI S, et al. Preparation and biological properties of dichloro(1,2diaminocyclohexane)platinum(II) (DACHPt)-loaded poly-

meric micelles[J]. Journal of Controlled Release, 2005, 101: 223.

- [10] PASETTO LM, DANDREA MR, ROSSI E, et al. Oxaliplatin-related neurotoxicity: How and why?[J]. Critical Reviews in Oncology, 2006, 59(2): 159-168.
- [11] KIDANI Y, INAGAKI K. Antitumor activity of 1,2diaminocyclohexane-platinum complexes against sarcoma-180 ascites form[J]. Journal of Medicinal Chemistry, 1978, 21(12): 1315-1318.
- [12] GALANSKI M, YASEMI A, JAKUPEC M, et al. Synthesis, cytotoxicity, and structure-activity relationships of new oxaliplatin derivatives[J]. Monatshefte Für Chemie, 2005, 136, 693-700.
- [13] MAEDA M, SASAKI T. Liposoluble platinum(II) complex and preparation thereof: EP0193936B1[P]. 1986-03-05.
- [14] ANDERSON D K, QUAGLIATO, HAUGWITZ R D, et al. Synthesis, physical properties, and antitumor activity of tetraplatin and related tetrachloroplatinum(IV) stereoisomers of 1,2-diaminocyclohexane[J]. Cancer Treatment Reports, 1986, 70(8): 997-1002.
- [15] 全国有色金属标准化技术委员会(SAC/TC 243). 铂化合物分析方法 铂量的测定 高锰酸钾电流滴定法: YS/T 646-2007[S]. 北京: 中国标准出版社, 2007.
- [16] NOJI M, OKAMOTO K, KIDANI Y, et al. Relation of conformation to antitumor activity of platinum(II) complexes of 1,2-cyclohexanediamine and 2-(aminomethyl)cyclohexylamine isomers against leukemia P388[J]. Journal of Medicinal Chemistry, 1981, 24(5): 508-515.