ICP-AES 法测定三苯基膦氯化铑中的微量杂质

方 卫^{1,2}, 冯 璐², 李 青^{2*}, 任传婷^{1,2}, 王应进^{1,2}, 吴庆伟², 马 媛², 杨晓滔² (1. 贵研检测科技(云南)有限公司, 昆明 650106;

2. 贵研铂业股份有限公司 稀贵金属综合利用新技术国家重点实验室, 昆明 650106)

摘 要:将三苯基膦氯化铑用硝酸、高氯酸消解,以混合酸溶解样品,用 ICP-AES 法测定三苯基膦 氯化铑中的微量 Al、Cu、Fe、Mg、Pd、Ni、Pb、Pt、Zn杂质元素含量。选择合适波长消除光谱干 扰,用背景点扣除的方式消除铑对 Fe、Ni、Pb、Pt、Zn 的基体干扰。各杂质元素的检测范围为 0.001%~0.1%,加标回收率为 93.25%~117.0%,精密度(*RSD*)为 0.18%~15.41%。与直流电弧发射光 谱分析方法相比,准确度和精密度均得到提高,高纯铑基体消耗减少,操作简化。 关键词:分析化学;三苯基膦氯化铑;杂质元素; ICP-AES 中图分类号: O657.31 文献标识码:A 文章编号: 1004-0676(2016)03-0056-04

Determination of Impurities in Tris(triphenylphosphine) Rhodium(I) Chloride by ICP-AES

FANG Wei^{1,2}, FENG Lu², LI Qing²^{*}, REN Chuanting^{1, 2}, WANG Yingjing^{1, 2}, WU Qingwei², MA Yuan², YANG Xiaotao²

(1. Sino-Platinum Metals Testing Technology (Yunnan) Co. Ltd., Kunming 650106, China; 2. State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Co. Ltd., Kunming 650106, China)

Abstract: A method for the determination of Al, Cu, Fe, Mg, Pd, Ni, Pb, Pt, Zn in tris(triphenylphosphine) rhodium(I) chloride by ICP-AES was developed. The samples were digestion by HNO₃ and HClO₄, then dissolved with HCl+HNO₃. The matrix effects come from Rh to Fe, Ni, Pb, Pt, Zn were eliminated by background point correction. The determination range is 0.001%~0.1%. The recoveries and *RSD* were 93.25%~117.0% and 0.18%~15.41%, respectively. Comparing with DC arc emission spectrometry, the method is more accurate and precise, less comsumption of high purity rhodium and easy to operate. **Key words:** analytical chemistry; tris(triphenylphosphine) rhodium(I) chloride; impurities; ICP-AES

三苯基膦氯化铑,又称威尔金森催化剂,为绛 红色晶体,主要用于催化加氢、醛脱羰基反应、烯 选择性加氢、羰基化、甲酰化反应等的催化剂,广 泛应用于石化、医药、化学等领域。其铑理论含量 为11.12%,由于铑价格高昂,同时三苯基膦氯化铑 中的一些杂质元素可能会影响到催化性能,因此需 对三苯基膦氯化铑产品中铑含量^[1]及杂质元素进行 准确分析。

三苯基膦氯化铑中杂质元素的测定需考虑样品的溶解和测定方法。GB/T 23519-2009^[2]中规定的方

法是将样品灼烧还原为铑粉,然后采用直流电弧发 射光谱测定铑粉中杂质元素含量^[3],然而该方法周 期长,精度差,还需消耗高纯铑基体配制的粉末光 谱标样。从另一个角度考虑,如果将灼烧还原得到 的铑粉再溶解后,可用电感耦合等离子体发射光谱 (ICP-AES)^[4-5]或电感耦合等离子体-质谱(ICP-MS)^[6] 测定杂质元素,可以节约光谱标样的消耗。但是铑 粉溶解困难,也难于保证测定速度。王克震^[6]采用 硝酸和高氯酸溶解三苯基膦氯化铑,用 ICP-MS 测 定了其中的铂、钯、金、铱,方法加标回收率为 93.8%

收稿日期: 2015-10-19

第一作者:方 卫,女,正高级工程师,硕士生导师,研究方向:贵金属分析化学。E-mail:fw930@ipm.com.cn

^{*}通讯作者:李 青,女,工程师,研究方向:贵金属分析化学。E-mail: lq@ipm.com.cn

~104.2%,相对标准偏差为 1.27%~4.17%。考虑到 ICP-MS 使用成本高,设备不普及,相对而言 ICP-AES 更有优势。

基于上述考虑,本文用硝酸、高氯酸破坏样品 中的有机物,盐酸-硝酸混合酸(3+1)溶解样品,选 择合适的方法消除干扰,采用 ICP-AES 法测定三苯 基膦氯化铑中的杂质元素。

1 实验

1.1 仪器

电感耦合等离子体原子发射光谱仪(美国 Perkin Elmer 公司 Optima 5300DV型):中阶梯光栅 +石英棱镜二维分光,200 nm 处分辨率为 0.005 nm。

测定条件:分析功率 1.25 kW;冷却气流量 12 L/min;辅助气流量 0.8 L/min;载气流量 0.3 L/min; 观测高度为线圈上方 15 mm;观测方向为垂直;积 分时间 3 s。

1.2 试剂及标准

盐酸(ρ=1.19 g/mL)、硝酸(ρ=1.42 g/mL)、高氯 酸(ρ=1.76 g/mL)均为市售优级纯试剂;盐酸-硝酸 (3+1)混合酸用时现配;实验用水为电阻率 18.2 MΩ·cm 的超纯水。

Al、Cu、Fe、Mg、Pd、Ni、Pb、Pt、Zn标准 贮备溶液:质量浓度均为 1.000 mg/mL,10%盐酸 介质,均采用基准物自行配制。工作溶液由标准贮 备溶液按级稀释制备。

高纯铑基体溶液:称取经发射光谱法检验合格的高纯铑粉,按照《贵金属合金化学分析方法总则及一般规定》^[3]附录方法溶解配制成铑质量浓度为10 mg/mL,10%盐酸介质的溶液。

1.3 实验方法

称取三苯基膦氯化铑固体试样 0.25 g 于 150 mL 石英烧杯中,加入 5 mL 浓硝酸和 3 mL 高氯酸,盖上表面皿,置于电热板上低温加热消解约 1 h,加 热冒高氯酸烟至湿盐状。冷却至室温,加入 3 mL 盐酸-硝酸混合酸溶解盐类,移入 25 mL 容量瓶中,用水稀释至刻度,混匀。采用电感耦合等离子体原子发射光谱仪进行测定。

2 结果与讨论

2.1 三苯基膦氯化铑溶解

三苯基膦氯化铑溶于苯、甲苯、三氯甲烷,但

不溶于水、醚和醇。ICP-AES 测定样品必须为水溶 液,因此需将固体样品转化为水溶液。通过实验, 选择用硝酸、高氯酸彻底破坏有机物,将铑和金属 杂质元素转化为水溶液。为减少试剂引入的污染, 需控制试剂加入量,经试验,溶解0.25g样品所需 试剂最低用量为硝酸5mL、高氯酸3mL。溶解后 的试样用3mL 盐酸-硝酸混合酸溶解。

2.2 标准工作曲线的制作

配制 Al、Cu、Fe、Mg、Pd、Ni、Pb、Pt、Zn 浓度分别为 0.00、0.10、0.20、0.50、1.00、5.00、 10.00 μg/mL 的混合标准系列工作溶液。在选定仪器 条件下,分别测定混合标准系列工作溶液各元素强 度值,制作工作曲线,每个元素工作相关系数须在 0.9995 以上,否则需重新标准化或另配制标准溶液。

2.3 三苯基膦配体对测定杂质元素的干扰

三苯基膦氯化铑经过强酸氧化消解后,其中的 三苯基膦配体已经被破坏,不存在光谱干扰。但有 可能因为增加溶液黏度形成基体效应。通过加标回 收试验,发现基体效应并不明显,可忽略不计。

2.4 铑基体对测定杂质元素的干扰及谱线选择

取不同浓度铑基体溶液,加入一定量的待测杂 质元素,用 ICP-AES 测定其浓度值,以评估铑对杂 质元素测定干扰情况。结果列于表 1。

表1 铑基体对杂质元素的干扰

Tab.1	Effects	of rhodium	matrix on	impurities
140.1	2110000	or mound		inp an invo

元素谱线	测得元素浓度/(μg/mL)				. The she had use
铑浓度/ (mg/mL)	0.00	0.50	2.2	10.0	干扰判断
A1396	0.88	0.89	0.89	0.93	无干扰
A1308	0.90	0.91	0.90	0.87	无干扰
Cu327	0.84	0.83	0.84	0.86	无干扰
Cu324	0.84	0.83	0.84	0.87	无干扰
Fe259	0.90	0.84	0.76	0.59	严重干扰
Fe238	0.91	0.87	0.84	0.85	轻微干扰
Mg285	0.85	0.85	0.84	0.83	无干扰
Mg279	0.85	4.90	17.3	62.5	严重干扰
Ni231	0.88	0.85	0.83	0.82	轻微干扰
Ni341	0.84	0.83	0.75	0.50	严重干扰
Pb220	0.84	0.75	0.52	-0.22	严重干扰
Pb283	0.71	0.51	-0.19	-2.82	严重干扰
Pb405	0.85	0.87	0.95	1.34	有干扰
Pd340	0.87	0.87	0.87	0.90	无干扰
Pd324	0.87	0.89	0.91	0.90	无干扰

续表1(Tab.1 continued)

元素谱线	测				
铑浓度/ (mg/mL)	0.00	0.50	2.2	10.0	十扰判断
Pt299	0.84	0.87	0.92	1.12	有干扰
Pt265	0.85	-2.5	-12.6	-47.4	严重干扰
Zn213	0.86	0.84	0.78	0.74	有干扰
Zn206	0.91	0.88	0.81	0.76	有干扰

注: 铑溶液中各杂质元素加入量均为 0.80 µg/mL。

表1中,当加入铑基体的测定值与无铑基体的 测定值相对标准偏差高于 5%时,可判定铑对该元 素分析谱线存在干扰,其中高于 25%认为是严重干 扰。存在严重干扰的谱线不宜作为分析谱线。从表 1可以看出,10 mg/mL 的铑对 Fe259、Mg279、Ni341、 Pb220、Pb283、Pt265 均存在严重干扰;对 Pb405、 Pt299、Zn213、Zn206 有干扰;对 Fe238、Ni231、、 Pd324 有轻微干扰。文献[4]采用等效浓度差减法扣 除铑基体对杂质元素测定的干扰,在此也可以采用, 但同样需要消耗铑基体。由于样品溶液中铑基体浓 度仅为 2.2 mg/mL,对于 Pb405、Pt299、Zn213、 Zn206 的干扰轻微,通过选择合适的扣背景点即可 满足要求。本文选择的测定波长如表 2 所列。

表 2 选定的各杂质元素测定波长

Tab.2 The determination wavelength of impurities

元素	波长/nm	元素	波长/nm	元素	波长/nm
Al	396.15	Cu	327.39	Fe	238.20
Mg	285.21	Ni	231.60	Pb	405.78
Pd	340.45	Pt	299.79	Zn	213.85

表 4 方法的加标回收率

Tab.4 Recoveries of standard addition

2.5 检出限的测定

在各杂质元素分析波长处,分别测定 7 次获得 试剂空白溶液及 2.2 mg/mL 铑基体溶液中各杂质元 素的浓度值。计算各杂质元素 7 次测定值的标准偏 差(SD)并放大 3 倍,即得到各杂质元素在试剂空白 溶液中和在铑基体溶液中的检出限。结果列于表 3。

表3杂质元素检出限(n=7)

Tab.3 The detected limits of impurities (n=7) /(μ g/mL)

元麦逆建	试剂空	白溶液	铑基体溶液(2.2 mg/mL)		
儿杀咱线-	SD	检出限	SD	检出限	
Al396.15	0.0019	0.0057	0.0026	0.0078	
Cu327.39	0.00071	0.0021	0.0012	0.0035	
Fe238.20	0.0041	0.012	0.0028	0.0084	
Mg285.21	0.00085	0.0025	0.00023	0.00070	
Ni231.60	0.0083	0.025	0.0091	0.027	
Pb405.78	0.011	0.034	0.0094	0.028	
Pd340.45	0.0036	0.011	0.0027	0.0081	
Pt299.79	0.019	0.058	0.032	0.097	
Zn213.85	0.0041	0.012	0.0060	0.018	

由表 3 可见,除了 Pt 在铑基体溶液中的检出限 高于试剂空白溶液的检出限外,其它元素在铑基体 溶液和试剂空白溶液中的检出限相当。这可能是由 于铑基体干扰所致。

2.6 加标回收实验

为了检验方法的可行性,采用加标回收方法计 算回收率。结果列于表 4。

元素 —	加入值 0.20	加入值 0.200 µg/mL		加入值 2.00 µg/mL		加入值 20.00 µg/mL	
	测得值/(µg/mL)	回收率/%	测得值/(µg/mL)	回收率/%	测得值/(µg/mL)	回收率/%	
Al	0.202, 0.200	101.0, 100.0	1.959, 1.953	97.95, 97.65	18.88, 18.88	94.40, 94.40	
Cu	0.207, 0.209	103.5, 104.5	2.064, 2.054	103.2, 102.7	19.63, 19.52	98.15, 97.60	
Fe	0.217, 0.234	108.5, 117.0	2.162, 2.136	108.1, 106.8	20.74, 20.76	103.7, 103.8	
Mg	0.207, 0.205	103.5, 102.5	1.998, 1.991	99.90, 99.55	18.69, 18.65	93.45, 93.25	
Ni	0.208, 0.212	104.0, 106.0	2.064, 2.072	103.2, 103.6	19.63, 19.65	98.14, 98.24	
Pb	0.212, 0.194	106.0, 97.00	2.064, 2.090	103.2, 104.5	19.69, 19.78	98.45, 98.90	
Pd	0.210, 0.213	105.0, 106.5	2.000, 1.999	100.0, 99.95	19.24, 19.12	96.19, 95.60	
Pt	0.208, 0.232	104.0, 116.0	2.236, 2.198	111.8, 109.9	21.01, 21.08	105.0, 105.4	
Zn	0.210, 0.206	105.0, 103.0	2.036, 2.046	101.8, 102.3	18.88, 18.98	94.39, 94.90	

59

从表 4 可见, 各元素的加标回收率在 93.25%~ 117.0%之间。其中 Pt 和 Fe 的加标回收率略高,可 能是相较其它元素, Pt 受铑干扰更严重些, 而低含 量 Fe 可能为溶样过程中污染所致。

2.7 实际样品测定

对于不太严重的干扰,可通过选择背景点扣除 的方式消除干扰。但并不适用于严重干扰的情况。 较之等效浓度差减法^[4],可免用高纯铑基体溶液。 也降低了分析成本。表 5 为采用 2 种方法测定实际 样品中杂质含量的结果。

表 5 实际样品中杂质测定结果 (n=7)

Tab.5 The determination results of practical sample (n=7)

元妻	等效浓度	差减	背景点扣除		
儿系	平均值/%	RSD/%	平均值/%	RSD/%	
Al	< 0.001	8.72	< 0.001	14.01	
Cu	< 0.001	-4.64	< 0.001	9.71	
Fe	< 0.001	19.61	< 0.001	16.11	
Mg	< 0.001	12.08	< 0.001	11.05	
Ni	< 0.001	-11.30	< 0.001	15.02	
Pb	< 0.001	2.68	< 0.001	30.82	
Pd	< 0.001	-13.80	< 0.001	72.44	
Pt	0.0082	3.69	0.0078	3.31	
Zn	< 0.001	-73.32	< 0.001	47.87	

由表 5 结果可见,采用背景点扣除的方式,测 定结果与等效浓度差减法相当,且不消耗铑基体。 此法可作为实际样品测定的方法。

3 结论

本文用硝酸、高氯酸破坏有机物,混合酸溶解 样品,Fe、Ni、Pb、Pt、Zn采用等效浓度差减或背 景点扣除,ICP-AES 法直接测定三苯基膦氯化铑中 Al、Cu、Fe、Mg、Pd、Ni、Pb、Pt、Zn量。本方 法的9个元素的检测范围均为0.001%~0.1%;各元 素的加标回收率为93.25%~117.0%;方法精密度为 0.18%~15.41%。方法操作简便、快速。与直流电弧 发射光谱分析方法相比,准确度和精密度均得到显 著提高,避免了直流电弧发射光谱分析方法繁琐的 操作步骤和节约了大量铑基体。方法已起草为国家 标准,待批准发布。

参考文献:

- 李继霞,蒋凌云,李俊,等. 含铑物料中铑测定方法的 研究进展[J]. 贵金属, 2014, 35(4): 88-91.
 LI J X, JIANG L Y, LI J, et al. Progress in rhodium determination method for rhodium-containing materials [J]. Precious metals, 2014, 35(4): 88-91.
- [2] 全国有色金属标准化技术委员会. 三苯基膦氯化铑: GB/T 23519-2009[S]. 北京: 中国标准出版社, 2009.
- [3] 贵研铂业股份有限公司. 纯铑中杂质元素的发射光谱 分析: YS/T 363-2006[S]. 北京: 中国标准出版社, 2006.
- [4] 方卫,侯文明,王应进,等. ICP-AES 法测定三氯化铑
 中杂质元素[J].贵金属,2008,29(2):34-37.
 FANG W, HUO W M, WANG Y J, et al. Determination of impurities in RhCl₃ by ICP-AES[J]. Precious metals, 2008, 29(2): 34-37.
- [5] 李光俐,甘建壮,马媛,等.多元光谱拟合校正电感耦合等离子体原子发射光谱法测定铑粉中19种杂质元素
 [J]. 冶金分析,2014,34(5):35-40.

LI G L, GAN J Z, MA Y, et al. Determination of nineteen impurity elements in rhodium powder by inductively coupled plasma atomic emission spectrometry with multicomponent spectral fitting correction[J]. Metallurgical analysis, 2014, 34(5): 35-40.

[6] 王克震. ICP-MS 法测定三(三苯基膦)氯化铑中铂、钯、 金、铱[J]. 金川科技, 2009(4): 11-13.