两种钯合金网在硝酸催化网中捕集铂的比较

韩 非,刘 欣

(中海油太原贵金属有限公司,太原 030006)

摘 要: 钯合金可在氨氧化反应中捕集铂,对某硝酸厂使用 PdNi 合金网和双功效铂催化剂(DEC) 功能网捕集铂的效果进行了对比,并对捕集机理进行了分析。结果表明,DEC 功能网比 PdNi 合金 网的铂耗低 26%,保持机组稳定运行、做好氨空气净化、及时更换催化剂等措施有利于降低铂耗。 关键词:金属材料;PdNi 合金网;双功效铂催化剂(DEC)功能网;捕集铂 中图分类号:TG146.3 文献标识码:B 文章编号:1004-0676(2017)01-0031-05

Comparison of Pt Catchment between Two Pd Alloy in Nitric Acid Catalyst Gauze

HAN Fei, LIU Xin

(China National Offshore Oil Taiyuan Precious Metals Co. Ltd., Taiyuan 030006, Shanxi, China)

Abstract: Pd alloy can capture Pt in the ammoxidation reaction. The efficiency of capturing Pt by PdNi alloy gauze and double-effect platinum gauze (DEC) was compared in a nitric acid plant and the capturing mechanism was analyzed. The results show that Pt consumption of the DEC gauze is 26% lower than that of the PdNi alloy gauze. Maintaining stable operation of the plant system, improving ammonia air purification and timely replacing the catalyst will lower the platinum consumption.

Key words: metal materials; PdNi alloy gauze; double-effect platinum catalysts (DEC) functional gauze; catchment of platinum

氨氧化反应是氨气与空气的混合气体在催化剂 表面发生的剧烈燃烧放热反应,生产硝酸的氨氧化 反应过程中使用以铂为主要元素的合金网催化剂。 根据氧化炉内压力的不同,温度通常在800~900℃。 铂催化剂在高温高压和强气流的冲击环境下发生反 应,造成贵金属的损失,如表1所示。

表1 不同硝酸装置的技术参数与铂损失量[1]

Tab.1 Technical parameters of various nitric acid production apparatus and relative loss of Pt^[1]

分类	反应压	铂网温	氨体积	运行	Pt 损失/
	力/MPa	度/℃	浓度/%	周期/月	(g/t 硝酸)
常压	0.1	810~850	12.0~12.5	8~12	0.04~0.05
中压	0.3~0.5	870~890	10.5~11.0	4~6	0.10~0.11
高压	0.7~0.9	920~940	10.3~10.5	1.5~3	0.25~0.30

在硝酸生产中,铂损失的费用是仅次于氨原料 的第二大成本构成因素^[2]。由于铂资源稀缺,价格 昂贵,其回收变得非常重要。早期使用瓷圈或玻璃 纤维等装置填充在催化网的下方来捕集气流中的 铂。1960 年代^[3],钯在高温下捕集 PtO₂性能的发现, 具有高回收性能的 PdAu 合金捕集网研发成功。由 于金同样为贵金属,为了降低捕集网的生产和应用 成本,含有铜、镍等贱金属的钯合金捕集网被开发, 降低了硝酸生产成本。1990 年代后期^[4], PdNi 合金 回收网在国内被广泛应用。

随着具有催化吸收、固溶再催化功能的催化剂 研发成功,例如双功效铂催化剂(DEC)功能网^[5]等。 在 DEC 功能网中,金属钯被集成到铂催化剂系统 中,铂的回收进一步加强,形成的铂钯固溶体具有 较强的催化功能,使铂金属的填充量同步降低。

收稿日期: 2016-04-18 第一作者:韩 非,男,硕士,工程师,研究方向:贵金属催化剂材料。E-mail: hanfeiok23@163.com 本文对比了某厂年产 27 万吨硝酸系统使用两 种催化网中铂的损耗,分析捕集机制和操作方式对 铂耗的影响。

1 数据来源

某厂年产 27 万吨硝酸的双加压机组属中压系 统,主要参数为:氧化炉压力 0.45 MPa,氧化炉温 度 860℃,空气流量 130000 m³/h,气氨流量 12900 m³/h,空压机出口温度 220℃,空气压力 0.33 MPa, 氮氧化物压缩机出口压力 0.90 MPa,6个月周期平 均产酸量 135000 吨。分别使用 2 种钯合金网连续运行 6 个周期进行对比。PdNi 合金网+PtRh7 催化剂 使用时间为 2009 年 3 月至 2012 年 3 月,DEC 功能 网使用时间为 2012 年 3 月至 2015 年 3 月。

1.1 PdNi 合金网+PtRh7 催化剂

PdNi 合金网+PtRh₇ 催化剂中, PdNi 合金网重 量为 24 kg,填充层数为 2 层,PtRh₇ 催化剂重量为 100 kg,填充层数为 7 层。其中铂含量 93 kg,铑含 量 7 kg,钯含量 22.8 kg,贵金属总重量为 122.8 kg。

1.2 DEC 功能网

DEC 功能网总重量为 100 kg, 其中铂含量>60 kg, 铑含量<5 kg, 钯含量 25~35 kg, 填充层数为 9~12 层。

1.3 表征和测定

采用扫描电子显微镜(日本电子 JSM-6700F 型 SEM)对使用前后的钯合金网进行形貌分析;测定使 用后的合金网金属含量,结合硝酸产量计算铂损耗。

2 结果与讨论

2.1 钯合金捕集铂的原理

钯与元素周期表中与其相邻的 IB 和VIIB 族中 具有面心立方晶格的元素可形成连续固溶体,这些 元素与钯的原子半径差(Δγ)和电负性差较小^[6],因 此铂、铑、铱、金、铜、银、镍均为合成钯合金的 优选金属。

2.1.1 PdNi 合金网对铂的捕集

典型的 PdNi 合金网使用平织织网方式,制作 过程包括合金熔炼、拉丝、织网等主要过程。网丝 径为 0.090 mm,网密度为 1024 孔/cm²,合金质量 比为Pd:Ni=95:5。PdNi 合金网安装在铂催化剂下方, 使用耐高温金属丝网将其与铂催化剂分开。在 380℃以上,铂在催化剂表面形成气态氧化物 PtO₂, 随气流到达 PdNi 合金网。同时,镍在高温状态下 氧化逸出,合金网形成空穴,钯在 350~790℃区间 形成 PdO,在 875℃以上发生分解:

$$2PdO=2Pd+O_2 \tag{1}$$

钯对氧的亲和力高于铂,PdO分解产生的钯夺 取 PtO₂气体中的氧,发生反应:

$$PtO_2+2Pd=Pt+2PdO$$
 (2)

铂被还原沉积在钯合金网表面,形成固溶体, 有 40%~70%的铂蒸汽能被捕集^[7-8]。

2.1.2 DEC 功能网对铂的捕集

DEC 功能网将钯合金引入催化系统,其织网过 程使用经向针织的方式,整个系统铂含量>60%, 铑含量<5%,钯金属 25%~35%。经向针织网为三 维立体结构,其具有抗热冲击性能良好、抗撕裂强 度大和氧化率高的特点。DEC 功能网使用计算化学 模拟设计,网的丝径从 0.060~0.090 mm 不等,各层 网的贵金属比例都不同。顺气流方向,根据催化贡 献的不同分为主反应区,次反应区和补充反应区^[9]。 铂金属的填充量逐渐减少,钯金属的填充量逐渐增 多。DEC 功能网的捕集部分主要位于次反应区和补 充反应区,含钯合金对铂的捕集原理与 PdNi 合金 网基本相同。每层催化网反应生成的 PtO₂ 气体均被 次反应区及其下方的合金中的钯吸附还原,被还原 的铂原子沉积在合金表面并与之合金化,从而形成 了催化-固溶-再催化的系统反应。

2.2 使用前后合金网表面形貌对比

PdNi 合金网使用前后的表面形貌如图 1 所示, DEC 功能网使用前后的表面形貌如图 2 所示。

由图 1 可见, 在经过 6 个月运行后, PdNi 合金 网吸附了大量的铂, 形成的固溶体丝径变粗, 形成 多孔结构。其原因是钯回收网表面形貌吸附物晶粒 长大是以台阶方式进行的, 在晶粒长大的后期出现 螺旋生长, 而不是气流冲刷的结果^[10-13]。丝径变粗 一定程度上影响了反应气流的顺利通过, 这可能是 在机组运行后期气流阻力增大的主要原因, 阻力的 增大对副反应增加和氨耗增大有一定影响。

由图 2 可见, DEC 功能网使用后补充反应区丝 材同样呈现多孔结构, 与图 1 对比, 其表面颗粒较 使用后的 PdNi 合金网颗粒大、孔隙大。DEC 功能 网的丝材由钯金属与铂金属固溶而成, 钯在催化系 统内的分布更加分散,且其填充质量大于钯合金网, 因此吸附铂的能力更强。经向针织的 DEC 丝网具有 更大的自由空间, 吸附铂后仍有较大的空隙供气流 通过, 使机组压力降更小, 尾气透平做功更充分。

图 2 DEC 功能网补充反应区使用 6 个月周期前(a)后(b)形貌图

Fig.2 Comparison of DEC functional gauze in the complement reaction zone (a) before and (b) after running for 6 months

2.3 贵金属损耗对比

根据使用前后的铂损失量和同期产酸量计算铂 耗(Pt_{loss}, mg/(t(HNO₃)), 2 种催化网铂耗计算公式 分别为:

Ptloss(PdNi+PtRh7)=

(新网 PtRh7 催化剂铂量-残网 PtRh7 催化剂铂 量+PdNi 合金网用后含铂量)/产酸量 (3) Pt_{loss} (DEC)=

(新网含铂量-残网含铂量)/产酸量 (4)

6 个月周期运行的铂耗如图 3 所示。由图 3 可 见,各使用周期的铂耗数值有差异,可归因于机组 运行不稳定。通过对该公司运行数据分析,使用 PdNi 合金网+PtRh₇ 催化剂的催化系统铂金属平均 损耗 93.77 mg/(t(HNO₃), PtRh₇ 实际损耗平均为 117 mg/(t(HNO₃),PdNi 合金网降低铂损耗 19.85%。使 用 DEC 功能网的铂金属平均损耗为 69.17 mg/ (t(HNO₃),比前者低 26.2%,降铂耗性能明显。

2.4 影响钯合金捕集铂的因素

设备、机组运行生产操作对两种合金网的铂耗

图 3 两种催化网网铂耗对比

均具有重要影响。

2.4.1 氨空气净化系统的影响

硝酸机组内部的润滑油或氨气中夹带的油气成 分通过加热,随气流进入氧化炉,钯合金捕集铂能 力将会下降。主要原因为,油污附着于铂网层表面 后发生分解,碳元素原子迁移至金属内部,既导致 丝材强度降低,也造成捕集通道的阻塞。随气流离 开铂网表面的铂金属颗粒增加,钯合金不能捕集固 相铂,造成铂的机械损失。此外,油污附着于钯合 金表面,造成 PdO 蒸汽减少,还原受阻,同样造成 铂金属损失增加。

2.4.2 开停车次数及运行时间的影响

机组运行过程中,机组开停车次数较多也会造 成钯合金吸附效率的降低,铂与钯固溶后并不能立 即与钯合金网形成牢固的结合,而是附着在丝材表 面。开停车次数过多,特别是由于触发连锁发生的 跳车会造成的气流反冲,附着的铂金属在强震动下 发生脱落,造成捕集效果的降低。此外,铂催化网 运行后期,钯合金对铂的吸附饱和,这会加大钯捕 集铂的难度,所以及时更换新的催化剂对于降低铂 耗具有重要意义。

2.4.3 瞬态反应的影响

PdNi 合金网能够有效捕集铂金属,但其亦可能 导致过高绝热温度,即瞬态反应。钯具有一定的催 化能力,在氨氧化装置点火开车时,氨可通过活性 较低的铂催化剂与其下方的 PdNi 合金网发生如下 反应:

 $NH_3+NO \rightarrow N_2 \quad (\Delta H=-435.4 \text{ kJ/mol})$ (5)

$$NH_3 + O_2 \rightarrow N_2 \quad (\Delta H = -318.2 \text{ kJ/mol}) \tag{6}$$

 $NH_3 + O_2 \rightarrow NO_x (\Delta H = -226.09 \text{ kJ/mol})$ (7)

反应(5)是高放热反应,其释放热量可以熔化 PdNi 合金网和上层铂网,造成贵金属大量熔融损 失。钯合金网中,钯含量越高,反应(5)发生的可能 性越大,这也是捕集网不使用纯钯网的原因^[9]。功 能网的设计主要采用梯度设计,优化了钯合金的含 量,降低了发生瞬态反应的概率。

瞬态反应通常发生在开车阶段,主要由点火初 期氨的浓度过高或铂网点燃时温度不均匀引起,可 通过调整工艺和原料组成避免该事故的发生。

3 结论

在硝酸生产中,铂催化网中铂的损耗是重要的 成本构成因素,使用钯合金网可以捕集部分挥发的 铂,降低铂损耗。通过对2种钯网捕集效果的对比 表明:

1) DEC 功能网由于组成和编织方式的优化, 具有比 PdNi 合金网更好的捕集效果,可降低铂耗 26%。

 2) 设备、机组运行生产操作对 2 种合金网的铂 耗均具有重要影响。做好氨气空气净化和保持机组 正常的运行,催化剂运行周期结束后及时更换,可 以减少铂金属的损失。

参考文献:

- SADYKOV V A, ISUPOVA L A, ZOLOTARSKII I A, et al. Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives[J]. Applied catalysis A: general, 2000, 204(1): 59-87.
- [2] 贺小塘,赵雨,王欢,等. 铂族金属催化网在硝酸工业 中的应用[J]. 贵金属, 2014, 35(S1), 158-163.
 HE X T, ZHAO Y, WANG H, et al. Application of platinum group metals catalysts in nitric acid industry[J]. Precious metals, 2014, 35(S1), 158-163.
- [3] 赛兴鹏, 王开军, 杨宏强, 等. 硝酸工业用铂合金催化 网技术进展[J]. 工业催化, 2008, 16(6): 1-6. SAI X P, WANG K J, YANG H Q, et al. Latest advances in platinum alloy catalyst gauzes for nitric acid production[J]. Industrial catalysis, 2008, 16(6): 1-6.
- [4] 宁远涛. 硝酸工业氨氧化反应铂合金催化网的百年发展: II. 氨氧化铂合金催化网的性质、表面状态和结构 再造[J]. 贵金属, 2008, 29(4): 41-46.
 NING Y T. The centennial development of platinum alloy catalytic gauzes for ammonia oxidation in nitric acid plants: II. performances, main species and reconstruction of platinum alloy catalytic gauzes[J]. Precious metal, 2008, 29(4): 41-46.
- [5] 王安晖, 刘多恩. 硝酸装置铂耗高的原因分析[J]. 化肥 工业, 2015, 42(3): 33-35.
 WANG A H, LIU D N. Analysis of causes for high platinum consumption of nitric acid unit[J]. Chemical fertilizer industry, 2015, 42(3): 33-35.
 [6] 宁远涛. 钯与周期表元素相互作用及固溶度分析[J].
- [0] 「20時、紀今周朝夜光家相互作用及固裕及分析[J]、 贵金属, 2014, 35(4): 1-5. NING Y T. Alloying characteristics and solid solubilities of periodic table elements in palladium[J]. Precious metals, 2014, 35(4): 1-5.
- [7] 李明, 宁远涛, 宋月清, 等. 硝酸工业用钯合金捕集网的应用研究进展[J]. 贵金属, 2005, 26 (3): 71-74.
 LI M, NING Y T, SONG Y Q, et al. Research progress of palladium alloy catchment gauzes in nitric acid industry
 [J]. Precious metals, 2005, 26(3): 71-74.
- [8] RDZAWSKI Z, CIURA L, NIKIEL B. Metallographic examination of catalyst gauzes and catchment gauzes from platinum and palladium alloys[J]. Journal of materials processing technology, 1995, 53(1): 319-329.

- [9] 刘晓红,刘欣,李志. 氨氧化催化系统的优化设计[J]. 贵金属, 2014, 35(2): 6-9.
 LIU X H, LIU X, LI Z. The optimum design of ammonia oxidation catalyst system[J]. Precious metals, 2014, 35(2): 6-9.
- [10] 刘欣,刘晓红,李志,等. 氨氧化反应中铂铑钯合金热 力学研究[J]. 工业催化, 2012, 20(9): 62-64.
 LIU X, LIU X H, LI Z, et al. Researches on thermodynamics of PtRhPd alloy in ammonia oxidation[J].
 Industrial catalysis, 2012, 20(9): 62-64.
- [11] YANG Z F, NING Y T, ZHAO H Z. Changes of composition and surface state of palladium-nickel alloy gauzes used in ammonia oxidation apparatus[J]. Journal

of alloys and compounds, 1995, 218(1): 51-57.

- [12] 高山, 孙凤礼, 袁刚山. PdNi5 合金网回收铂催化剂研 究[J]. 材料工程, 2001, 1(6): 21-23.
 GAO S, SUN F L, YUAN G S. The study of platinum recovery by PdNi5 alloy catchment gauzes in nitric acid plants[J]. Journal of materials engineering, 2001, 1(6): 21-23.
- [13] 胡新,杨桂生,张文莉. 硝酸工业用铂合金催化网的发展[J]. 贵金属, 2016, 37(1): 67-81.
 HU X, YANG G S, ZHANG W L. The progresses of the catalyst gauze used in nitric acid production[J]. Precious metals, 2016, 37(1): 67-81.

【上接第 30 页】

- [12] 陈昊. 内氧化 Ag-Mg 和 Ag-Mg-Ni 合金组织性能的研究[D]. 西安: 西安建筑科技大学, 2012.
 CHEN H. Research on microstructure and properties of internal oxidizing Ag-Mg and Ag-Mg-Ni alloys[D]. Xi'an: Xi'an university of architecture and technology, 2012.
- [13] 熊易芬. 银及银合金的内氧化[J]. 贵金属, 1990, 11(2): 39-47.
 XIONG Y F. Internal oxidation of silver and silver base alloys[J]. Precious materials, 1990, 11(2): 39-47.

[14] 朱绍武. Ag-Mg-Ni 合金内氧化后结构与性能研究[J]. 贵金属, 2013, 34(1): 29-32.
ZHU S W. The property and microstructure of Ag-Mg-Ni alloy after internal oxidation[J]. Precious materials, 2013, 34(1): 29-32.

- [15] 郑月秋, 张廷杰, 沈其峰, 等. Ag-Mg 内氧化合金的电镜观察[J]. 稀有金属材料与工程, 1981(4): 1-6.
 ZHENG Y Q, ZHANG T J, SHEN Q F, et al. Electron microscopic observation of Ag-Mg internal oxidation alloy[J]. Rare metal materials and engineering, 1981(4): 1-6.
- [16] 马小龙,赵涛,余建军,等.加工率及退火温度对纯Ag硬度的影响[J]. 热加工工艺,2015(24):204-205.
 MA X L, ZHAO T, YU J J, et al. Effect of working rate and annealing temperature on hardness of silver[J]. Hot working technology, 2015(24): 204-205.